

MEMORY MANAGEMENT
• The task of subdivision is carried out dynamically by the OS and is known as memory

management.
• Uniprogramming system:

◦ main memory is divided into two parts: one part for the OS (resident monitor) and one
part for the program currently being executed.

• Multiprogramming system:
◦ the "user" part of memory is subdivided to accommodate multiple processes.

i) Swapping
• Three types of queues:

1. the long-term queue of requests for new processes,
2. the short-term queue of processes ready to use the processor, and
3. the various I/O queues of processes that are not ready to use the processor.

• I/O activities are much slower than computation and therefore the processor in a uniprogramming
system is idle most of the time.

• Memory holds multiple processes and that the processor can move to another process when
one process is waiting.

• But the processor is so much faster than I/O that it will be common for all the processes in
memory to be waiting on I/O.

• Thus, even with multiprogramming, a processor could be idle most.

Solution is swapping
• a long-term queue of process requests, typically stored on disk.
• These are brought in, one at a time, as space becomes available.
• As processes are completed, they are moved out of main memory.
• Now the situation will arise that none of the processes in memory are in the ready state (e.g.,

all are waiting on an I/O operation).

• The processor swaps one of these processes back out to disk into an intermediate queue.
• This is a queue of existing processes that have been temporarily kicked out of memory.
• The OS then brings in another process from the intermediate queue, honors a new process

request from the long-term queue. Execution then continues with the newly arrived process.

ii) Partitioning
• The simplest scheme for partitioning available memory is to use fixed-size partitons.
• Even with the use of unequal fixed-size partitions, there will be wasted time
• In most cases, a process will not require exactly as much memory as provided by the

partition.
◦ For example,

▪ a process that requires 3M bytes of memory would be placed in the 4M partition,
wasting 1M that could be used by another process.

It leads situation in which there are a lot of small holes in memory.
As time goes on, mem becomes more and more fragmented, and memory utilization declines.

One technique for overcoming this problem is compaction.
A process in memory consists of instructions plus data. The instructions will contain addresses for
memory locations of two types:
*Addresses of data items
* Addresses of instructions, used for branching instructions

A logical address is expressed as a location relative to the beginning of the program Instructions in the
program contain only logical addresses.
A physical address is an actual location in main memory. When the processor executes a process, it
automatically converts from logical to physical address by adding the current starting location of the
process, called its base address)

iii) Paging
• unequal fixed-size and variable-size partitions are inefficient in the use of memory
• Suppose, however that memory is partitioned into equal fixed-size chunks that are relatively

small, and that each process is also divided into small fixed-size chunks of some size.
• The chunks of a program, known as pages, could be as signed to available chunks of memory,

known as frames or page frames

• At a given point in time, some of the frames in memory are in use and some are free,

• The list of freeframes is maintained by the OS. Process A, stored on disk, consists of four
When it comes time to load this process, the OS finds four free frames and loads the four
pages of the process A into the four frames page

Example, that there are not sufficient unused contiguous frames to hold the process. Does this prevent
the OS from loading A?
The answer is no, because once again use the concept of logical address.

• A simple base address will no longer suffice. Rather, the OS maintains a page table for each
process.

• The page table shows the frame location for each page of the process.
• Within the program, each logical address consists of a page number and a relative address

within the page.

• That refinement is demand paging. which simply means that each page of a process is brought
in only when it is needed, that is, on demand.

• Thus, at any one time, only a few pages of any given process are in mem and therefore more
processes can be maintained in memory, When it brings one pag it must throw another page
out; this is known as page replacement).

iv) Segmentation
• Segmentation allows the programmer to view memory as consisting of mul tiple address

spaces or segments.
• Segments are of variable, indeed dynamic, size.
• The programmer or the OS will assign programs and data to different segments.
• There may be a number of program segments for various types of programs as well as a

number of data segments.

• Each segment may be assigned access and usage rights. Memory references consist of a
(segment number, offset) form of address.

• This organization has a number of advantages to the programmer over a segmented address
space:
1. It simplifies the handling of growing data structures. If the programmer does not know

ahead of time how large a particular data structure will become, it not necessary to guess.
The data structure can be assigned its own segment and the OS will expand or shrink the
segment as needed.

2. It allows programs to be altered and recompiled independently without requiring that an
entire set of programs be relinked and reloaded. Again, this is accomplished using
multiple segments.

3. It lends itself to sharing among processes. A programmer can place a utility program or a
useful table of data in a segment that can be addressed by other processes

4. It lends itself to protection. Because a segment can be constructed to contain well-defined
set of programs or data, the programmer or a system administra tor can assign access
privileges in a convenient fashion

Cache Memories

DIRECT MEMORY ACCESS (DMA)

• A direct memory access (DMA) is an operation in which data is copied (transported) from
one resource to another resource in a computer system without the involvement of the CPU.

• To copy data from HDD to pen drive, CPU is not necessary
• CPU is general purpose processor and has lot of work has to be done by CPU in a computer

system.
• DMA is speed up the memory operations
• DMA reduces the CPU interaction in data transfer, so CPU utilization will be high in the

system

DMA Controller:
• The unit that controls DMA transfers is referred to as a DMA Controller
• DMAC is a controller (a chip) specially designed for Data transfer Invented by Intel.
• In DMA process, DMAC will take over the control of the Bus and become master of it until

the transfer is completed or CPU revoke the grant of master of bus
◦ I/O device request the DMAC (DRQ) to transfer data
◦ DMAC request CPU to grant bus to use (HLQ - Hold request)
◦ CPU grants the access to use bus by DMAC (HLDA - Hold Acknowledgement)

• To initiate the transfer of a block of words, the processor sends to the DMA controller the
starting address, the number of words in the block, and the direction of the transfer.

• The DMA controller then proceeds to perform the requested operation.
• When the entire block has been transferred, it informs the processor by raising an interrupt

signal.

Registers in DMAC:

• DMA controller registers that are accessed by the processor to initiate the data transfer.
• Two registers are used for storing the starting address and the word count.
• The third register contains status and control flags.
• The R/W bit determines the direction of the transfer.

◦ When this bit is set to 1, the controller performs a Read operation.
◦ Otherwise, it performs a Write operation.

• Additional information is also transferred as may be required by I/O device.
• When the controller has completed transferring a block of data, it sets the Done flag to 1.
• Bit 30 is the Interrupt-enable flag, IE.

◦ When this flag is set to 1, it causes the controller to raise an interrupt after it has
completed transferring a block of data.

• Finally, the controller sets the IRQ bit to 1 when it has requested an interrupt.

• One DMA controller connects a high-speed Ethernet to the computer's I/O bus.
• The disk controller, which controls two disks, also has DMA capability and provides two

DMA channels. It can perform two independent DMA operations, as if each disk had its own
DMA controller.

• To start DMA transfer of block of data from the main Memory to one of the disks, an OS
routine write the address and word count info into the registers of the disk controllers.

• The DMA controller proceeds independently to implement the specified operation.
• When the transfer is completed, this fact is recorded in the status and control register of the

DMA channel by setting the Done bit.
• At the same time, if the IE bit is set, the controller sends an interrupt request to the processor

and sets the IRQ bit.
• The status register may also be used to record other information, such as whether the transfer

took place currently or errors occurred.

The DMA Controller Transfers the Data in Three Modes:
1. Burst Mode
2. Cycle Stealing Mode
3. Transparent Mode

Burst Mode:
• Once the DMA controller gains the charge of the system bus, then it releases the system bus

only after completion of data transfer.
• Till then the CPU has to wait for the system buses.

Cycle Stealing Mode:
• The DMA controller forces the CPU to stop its operation and relinquish the control over the

bus for a short term to DMA controller.
• After the transfer of every byte, the DMA controller releases the bus and then again requests

for the system bus.
• In this way, the DMA controller steals the clock cycle for transferring every byte.

Transparent Mode:
• The DMA controller takes the charge of system bus only if the processor does not require the

system bus.
Storage Buffer:

• Most DMA controllers incorporate a data storage buffer.
• In the case of the network interface, the DMA controller reads a block of data from the main

memory and stores it into its input buffer.
• This transfer takes place using burst mode at a speed appropriate to the memory and the

computer bus.
 Then, the data in the buffer are transmitted over the network at the speed of the network.

Advantages:
• Transferring the data without the involvement of the processor will speed up the read-write

task.
• DMA reduces the clock cycle requires to read or write a block of data.
• Implementing DMA also reduces the overhead of the processor.

Disadvantages:
• As it is a hardware unit, it would cost to implement a DMA controller in the system.
• Cache coherence problem can occur while using DMA controller.

Arbitration:
• A conflict may arise if both the processor and a DMA controller or two DMA controllers try

to use the bus at the same time to access the main memory.
• To resolve these conflicts, an arbitration procedure is implemented on the bus.

Bus Arbitration
→A device that initiates data transfers on the bus at any given time is called a bus master.
→Bus arbitration is a process by which next device becomes the bus controller by transferring bus
mastership to another bus
Bus arbitration schemes usually try to balance two factors:
▪ Bus priority: the highest priority device should be serviced first
• Fairness: Even the lowest priority device should never be completely locked out from the bus

Types of Bus Arbitration:
i)Centralized Arbitration
ii)Distributed Arbitration

Centralized Arbitration:
• A single bus arbiter performs the required arbitration.

• The bus arbiter may be the processor or a separate controller connected to the bus.
• There are three different arbitration schemes that use the centralized bus arbitration approach

1. Daisy Chaining Method

2. Centralized Bus Arbitration Polling or Fixed Priority or Rotating Priority Method

3. Independent Request Method

• A DMA controller indicates that it needs to become the bus master by activating the Bus-
Request line, BR.

• When Bus-Request is activated, the processor activates the Bus-Grant signal, BGI, indicating
to the DMA controllers.

• This signal is connected to all DMA controllers using a daisychain arrangement.

• If DMA controller 1 is requesting the bus, it blocks the propagation of the grant signal to
other devices.

• Otherwise, it passes the grant downstream by asserting BG2.

• The current bus master indicates to all devices that it is using the bus by activating another
open-collector line called BusBusy BBSY.

• During its tenure as the bus master, it may perform one or more data transfer operations. After
it releases the bus, the processor resumes bus mastership.

• The arbiter circuit ensures that only one request is granted at any given time, according to a
predefined priority scheme. Alternatively, a rotating priority scheme may be used to give all
devices an equal chance of being serviced.

Distributed arbitration:
• All devices waiting to use the bus share the responsibility of carrying out the arbitration

process
• Arbitration process does not depend on a central arbiter and hence distributed arbitration has

higher reliability.
• Each device is assigned a 4-bit ID number All the devices are connected using 5 lines, 4

arbitration lines to transmit the ID, and one line for the Start-Arbitration signal
• A winner is selected as a result of the interaction among the signals transmitted over these

lines by all contenders. The net outcome is that the code on the four lines represents the
request that has the highest ID number.

• if the input to one driver is equal to one and the input to another driver connected to the same
bus line is equal to 0 the bus will be in the low-voltage state. In other words, the connection
performs an OR function in which logic I wins.

• Assume that two devices, A and B, having ID numbers 5 and 6. respectively. are

requesting the use of the bus.
• Device A transmits the pattern 0101, and device B transmits the pattern 0110.
• The code seen by both devices is 0111. Each device compare the pattern on the

arbitration lines to its own ID, starting from the most significant be If it detects a
difference at any bit position, it disables its drivers at that bit position and for all lower-
order bits.

• It does so by placing a 0 at the input of these drivers.
• In the case of our example, device A detects a difference on line ARB1. Hence, it

disable its drivers on lines ARBI and ARBO.
• This causes the pattern on the arbitration lines to change to 0110, which means that B

has won the contention.
• Note that, since the code on the priority lines is 0111 for a short period, device B may

temporarily disable driver on line ARBO.
• However, it will enable this driver again once it sees a 0 on line ARBI resulting from

the action by device A.

• Decentralized arbitration has the advantage of offering higher reliability, because
operation of the bus is not dependent on any single device.

• Many schemes have been proposed and used in practice to implement distributed
arbitration.

PARALLEL AND SERIAL INTERFACE
Interface Circuits:

• The I/O interface of a device consists of the circuitry needed to connect that device to the bus.
On one side of the interface are the bus lines for address, data, and control.

• On the other side are the connections needed to transfer data between the interface and the I/O
device.

• This side is called a port, and it can be either a parallel or a serial port.

An I/O interface does the following:
1. Provides a register for temporary storage of data
2. Includes a status register containing status information that can be accessed by the processor
3. Includes a control register that holds the information governing the behaviour of the interface
4. Contains address-decoding circuitry to determine when it is being addressed by the processor
5. Generates the required timing signals
6. Performs any format conversion that may be necessary to transfer data between the processor

and the I/O device, such as parallel-to-serial conversion in the case of a serial port

Parallel Interface:
• A typical keyboard consists of mechanical switches that are normally open.
• When a key is pressed, its switch closes and establishes a path for an electrical signal.
• This signal is detected by an encoder circuit that generates the ASCII code for the

corresponding character.

• A difficulty with such mechanical pushbutton switches is that the contacts bounce when a key
is pressed, resulting in the electrical connection being made then broken several times before
the switch settles in the closed position.

• Although bouncing may last only one or two milliseconds, this is long enough for the
computer to erroneously interpret a single pressing of a key as the key being pressed and
released several times.

• The effect of bouncing can be eliminated using a simple debouncing circuit.

Figure 7.10: Keyboard to Processor connection

• The output of the encoder consists of one byte of data representing the encoded character and
one control signal called Valid.

• When a key is pressed, the Valid signal changes from 0 to 1, causing the ASCII code of the
corresponding character to be loaded into the KBD_DATA register and the status flag KIN to
be set to 1.

Input-interface-circuit

• The interface circuit connected to an asynchronous bus on which transfers are controlled by
the handshake signals Master-ready and Slave-ready.

Implementation of the status flag circuit

• The KIN flag is the output of a NOR latch connected
• A flip-flop is set to 1 by the rising edge on the Valid signal line.
• This event changes the state of the NOR latch to set KIN to 1, but only when Master-ready is

low.

• The reason for this additional condition is to ensure that KIN does not change state while
being read by the processor.

• Both the flip-flop and the latch are reset to 0 when Read-data becomes equal to 1, indicating
that KBD_DATA is being read.

• A designer using modern computer aided design tools would specify these functions using a
hardware description language such as VHDL or Verilog.

• The resulting circuits would depend on the technology used and may or may not be the same
as the circuits shown in these figures.

Output Interface:
• used to connect an output device such as a display.
• Assume that the display uses two handshake signals, New-data and Ready, in a manner

similar to the handshake between the bus signals Master-ready and Slave-ready.

• When the display is ready to accept a character, it asserts its Ready signal, which causes the
DOUT flag in the DISP_STATUS register to be set to 1.

• When the I/O routine checks DOUT and finds it equal to 1, it sends a character to
DISP_DATA.

• This clears the DOUT flag to 0 and sets the New-data signal to 1.

• In response, the display returns Ready to 0 and accepts and displays the character in
DISP_DATA.

• When it is ready to receive another character, it asserts Ready again, and the cycle repeats.

 Display to processor connection.

Serial Interface:
• A serial interface is used to connect the processor to I/O devices that transmit data one bit at a

time.
• Data are transferred in a bit-serial fashion on the device side and in a bit-parallel fashion on

the processor side.
• The transformation between the parallel and serial formats is achieved with shift registers that

have parallel access capability.

• The input shift register accepts bit-serial input from the I/O device.
• When all 8 bits of data have been received, the contents of this shift register are loaded in

parallel into the DATAIN register.

• Similarly, output data in the DATAOUT register are transferred to the output shift register,
from which the bits are shifted out and sent to the I/O device.

• Two status flags, which refers to as SIN and SOUT, are maintained by the Status and control
block.

• The SIN flag is set to 1 when new data are loaded into DATAIN from the shift register, and
cleared to 0 when these data are read by the processor.

• The SOUT flag indicates whether the DATAOUT register is available.
• It is cleared to 0 when the processor writes new data into DATAOUT and set to 1 when data

are transferred from DATAOUT to the output shift register.

• The double buffering used in the input and output paths
• It is possible to implement DATAIN and DATAOUT themselves as shift registers, thus

obviating the need for separate shift registers.
• After receiving one character from the serial line, the interface would not be able to start

receiving the next character until the processor reads the contents of DATAIN.
• Thus, a pause would be needed between two characters to give the processor time to read the

input data.

• With double buffering, the transfer of the second character can begin as soon as the first
character is loaded from the shift register into the DATAIN register.

• Thus, provided the processor reads the contents of DATAIN before the serial transfer of the
second character is completed, the interface can receive a continuous stream of input data
over the serial line.

• An analogous situation occurs in the output path of the interface.

• During serial transmission, the receiver needs to know when to shift each bit into its input
shift register.

• Since there is no separate line to carry a clock signal from the transmitter to the receiver, the
timing information needed must be embedded into the transmitted data using an encoding
scheme.

• There are two basic approaches.
• The first is known as asynchronous transmission, because the receiver uses a clock that is not

synchronized with the transmitter clock.
• In the second approach, the receiver is able to generate a clock that is synchronized with the

transmitter clock

Asynchronous Transmission:
• This approach uses a technique called start-stop transmission.

• Data are organized in small groups of 6 to 8 bits, with a well-defined beginning and end. In a
typical arrangement, alphanumeric characters encoded in 8 bits are transmitted

• The line connecting the transmitter and the receiver is in the 1 state when idle.
• A character is transmitted as a 0 bit, referred to as the Start bit, followed by 8 data bits and 1

or 2 Stop bits.
• The Stop bits have a logic value of 1.
• The 1-to-0 transition at the beginning of the Start bit alerts the receiver that data transmission

is about to begin.
• Using its own clock, the receiver determines the position of the next 8 bits, which it loads into

its input register.
• The Stop bits following the transmitted character, which are equal to 1, ensure that the Start

bit of the next character will be recognized.
• When transmission stops, the line remains in the 1 state until another character is transmitted.

Synchronous Transmission:
• In the start-stop scheme, the position of the 1-to-0 transition at the beginning of the start bit is

the key to obtaining correct timing information.
• This scheme is useful only where the speed of transmission is sufficiently low and the

conditions on the transmission link are such that the square waveforms shown in the figure
maintain their shape.

• For higher speed a more reliable method is needed for the receiver to recover the timing
information.

• Encoded data are usually transmitted in large blocks consisting of several hundreds or several
thousands of bits.

• The beginning and end of each block are marked by appropriate codes, and data within a
block are organized according to an agreed upon set of rules. Synchronous transmission
enables very high data transfer rates

Interconnection Standards
• A typical desktop or notebook computer has several ports that can be used to connect I/Odevices,

such as a mouse, a memory key, or a disk drive.
• Standard interfaces have been developed to enable I/O devices to use interfaces that are independent

of any particular processor.

• A memory key that has a USB connector can be used with any computer that has a USB port.

Universal Serial Bus (USB)
• The Universal Serial Bus (USB) is the most widely used interconnection standard.
• A large variety of devices are available with a USB connector, including mice, memory keys, disk

drives, printers, cameras, and many more.
• The success of the USB is due to its simplicity and low cost.
• The original USB specification supports two speeds of operation, called low-speed (1.5 Megabits/s)

and full-speed (12 Megabits/s).

• USB 2, called High-Speed USB, was introduced.
• It enables data transfers at speeds up to 480 Megabits/s.

• As I/O devices continued to evolve with even higher speed requirements, USB 3 (called Superspeed)
was developed.

• It supports data transfer rates up to 5 Gigabits/s.

• Key objectives:
1. Provide a simple, low-cost, and easy to use interconnection system
2. Accommodate a wide range of I/O devices and bit rates, including Internet connections, and

audio and video applications
3. Enhance user convenience through a “plug-and-play” mode of operation

Device Characteristics
• The kinds of devices that may be connected to a computer cover a wide range of functionality.
• The speed, volume, and timing constraints associated with data transfers to and from these devices

vary significantly.
• The sampling process yields a continuous stream of digitized samples that arrive at regular intervals,

synchronized with the sampling clock. Such a data stream is called isochronous, meaning that
successive events are separated by equal periods of time. A signal must be sampled quickly enough
to track its highest-frequency components.

• Data transfers for images and video have similar requirements, but require much higher data transfer
rates. To maintain the picture quality of commercial television, an image should be represented by
about 160 kilobytes and transmitted 30 times per second. Together with control information, this
yields a total bit rate of 44 Megabits/s. Higher-quality images, as in HDTV (High Definition TV),
require higher rates.

Plug-and-Play
• The USB standard defines both the USB hardware and the software that communicates with it.
• Its plug-and-play feature means that when a new device is connected, the system detects its existence

automatically.
• The software determines the kind of device and how to communicate with it, as well as any special

requirements it might have.
• As a result, the user simply plugs in a USB device and begins to use it, without having to get

involved in any of these details.
• The USB is also hot-pluggable, which means a device can be plugged into or removed from a USB

port while power is turned on.

USB Architecture
• The USB uses point-to-point connections and a serial transmission format.
• When multiple devices are connected, they are arranged in a tree structure

• Each node of the tree has a device called a hub, which acts as an intermediate transfer point between
the host computer and the I/O devices.

• At the root of the tree, a root hub connects the entire tree to the host computer.
• The leaves of the tree are the I/O devices: a mouse, a keyboard, a printer, an Internet connection, a

camera, or a speaker.
• The tree structure makes it possible to connect many devices using simple point-to-point serial links.

• Polling:
• If I/O devices are allowed to send messages at any time, two messages may reach the hub at the

same time and interfere with each other.
• The USB operates strictly on the basis of polling.
• A device may send a message only in response to a poll message from the host processor.
• Hence, no two devices can send messages at the same time.
• This restriction allows hubs to be simple, low-cost devices.

• Address:
• Each device on the USB, whether it is a hub or an I/O device, is assigned a 7-bit address. This

address is local to the USB tree and is not related in any way to the processor’s address space.

• The root hub of the USB, which is attached to the processor, appears as a single device.
• The host software communicates with individual devices by sending information to the root hub,

which it forwards to the appropriate device in the USB tree.

• Connection:
• When a device is first connected to a hub, or when it is powered on, it has the address 0.
• Periodically, the host polls each hub to collect status information and learn about new devices that

may have been added or disconnected.
• When the host is informed that a new device has been connected, it reads the information in a special

memory in the device’s USB interface to learn about the device’s capabilities.
• It then assigns the device a unique USB address and writes that address in one of the device’s

interface registers.
• It is this initial connection procedure that gives the USB its plug-and-play capability.

Isochronous Traffic on USB
• An important feature of the USB is its ability to support the transfer of isochronous data in a simple

manner.
• isochronous data need to be transferred at precisely timed regular intervals.
• To accommodate this type of traffic, the root hub transmits a uniquely recognizable sequence of bits

over the USB tree every millisecond. This sequence of bits, called a Start of Frame character, acts as
a marker indicating the beginning of isochronous data, which are transmitted after this character.

• Thus, digitized audio and video signals can be transferred in a regular and precisely timed manner.

Electrical Characteristics
• USB connections consist of four wires, of which two carry power, +5 V and Ground, and two carry

data.
• Thus, I/O devices that do not have large power requirements can be powered directly from the USB.

• Two methods are used to send data over a USB cable.
• When sending data at low speed, a high voltage relative to Ground is transmitted on one of the two

data wires to represent a 0 and on the other to represent a 1.
• The Ground wire carries the return current in both cases.
• Such a scheme in which a signal is injected on a wire relative to ground is referred to as single-ended

transmission.

• The speed at which data can be sent on any cable is limited by the amount of electrical noise present.
• The term noise refers to any signal that interferes with the desired data signal and hence could cause

errors.

• Single-ended transmission is highly susceptible to noise.
• The voltage on the ground wire is common to all the devices connected to the computer.
• Signals sent by one device can cause small variations in the voltage on the ground wire, and

hence can interfere with signals sent by another device. Interference can also be caused by one wire
picking up noise from nearby wires.

• The High-Speed USB uses an alternative arrangement known as differential signaling.
• The data signal is injected between two data wires twisted together.
• The ground wire is not involved.
• The receiver senses the voltage difference between the two signal wires directly, without reference to

ground.
• This arrangement is very effective in reducing the noise seen by the receiver, because any noise

injected on one of the two wires of the twisted pair is also injected on the other.
• Since the receiver is sensitive only to the voltage difference between the two wires, the noise

component is cancelled out.
• The ground wire acts as a shield for the data on the twisted pair against interference from nearby

wires. Differential signaling allows much lower voltages and much higher speeds to be used
compared to single-ended signaling.

SATA

• In the early days of the personal computer, the bus of a popular IBM computer called AT,
which was based on Intel’s 8080 microprocessor bus, became an industry standard.

• It was named ISA, for Industry Standard Architecture.
• An enhanced version, including a definition of the basic software needed to support disk

drives, was later named ATA, for AT Attachment bus.
• A serial version of the same architecture became known as SATA, which is now widely used

as an interface for disks.
• Like all standards, several versions of SATA have been developed with added features and

higher speeds.
• The original parallel version has been renamed PATA, but it is no longer used in new

equipment.

• The basic SATA connector has 7 pins, connecting two twisted pairs and three ground wires.
• Differential transmission is used, with clock frequencies ranging from 1.5 to 6.0 Gigabits/s.
• Some of the recent versions provide an isochronous transmission feature to support audio and

video devices.

Features:
1. Low Voltage Requirement: SATA operates on 500mV (0.5V) peak-to-peak signaling. This

help in promoting a much low interference and crosstalk between conductors.
2. Hot Plugging: This feature helps users to change or remove storage devices even when the

computer is running.
3. Staggered Spin-Up: Allows sequential hard disk drive startup, which helps even out power

load distribution during system booting.
4. Native Command Queuing (NCQ): Usually, the commands reach a disk for or writing from

different locations on the disk. When the commands are carried out based on the order in
which they appear, a substantial amount of mechanical overhead is generated because of the
constant repositioning of the read/write head. SATA II drives use an algorithm to identify the
most effective order to carry out commands. This helps to reduce mechanical overhead and
improve performance.

5. Port Multipliers: Allows the connection of up to 15 drives to a SATA controller. This
facilitates the building of disk enclosures.

6. Port Selectors: Facilitates redundancy for two hosts connected to a single drive, allowing the
second host to take over in the event of a primary host failure.

7. Simplified construction: PATA cables had 40-pin/80-wire ribbon cable. This was complex
in structure. In comparison, SATA had a single 7 pin data cable and a 15 pin power cable.
This cable resulted in a higher signaling rate, which translates

8. Differential Signaling: SATA uses differential signaling. Differential signaling is a
technology which uses two adjacent wires to simultaneously the in-phase and out-of-phase
signals. Thus, it is possible to transfer high-speed data with low operating voltage and low
power consumption by detecting the phase difference between the two signals at the receiver's
end.

9. High data transfer rate: SATA has a high data transfer rate of 150/300/600 MBS/second.
This capability of SATA allows for faster program loading, better picture loading and fast
document loading.

10. Large Cable Length : SATA cable can be of length up to 1 meter, whereas PATA cable can
only have a length of maximum 18 inches.

Operating Modes:
SATA operates on two modes:

1)IDE mode: IDE stands for Integrated Drive Electronics. This mode is used to provide backward
compatibility with older hardware, which runs on PATA, at low performance.

2)AHCI mode: AHCI is an abbreviation for Advanced Host Controller Interface. AHCI is a high-
performance mode that also provides support for hot-swapping.

The Serial ATA [SATA] bus is defined over two separate connectors, one connector for the data lines
and one for the power lines.

tel:150
tel:600
tel:300

