UNIT— Y

MEMobORY ATND i/o
Memeond Concapls and H—gmcﬂu& ~Memery
Mamagement — Cache Memontos - Mc._defLa andl

V(jLEJ-O—Qa Me_moza - DMA -
) CLHCQ Se)tj-o-Q. illn(b..ba@,_

b a2/e _ Pkenconneckion Stamdarxds 03B, 3ATA-

f_llﬂkg)\)t,u-[)

M e ot .
Memon) Concaphs - d Corcaplt andl Hirarchy .
s and e dod ﬁm,a operats oﬂum

A8
¥* The Tnalamum Bize b The Trmmov—a Yhat can be
used D Gma CDﬁ\-Fu.DEA s Sebexmined ba “the
ao\Afr%&%na scherne -
Ex
eroalss b-bik oddrerier

» a lb-bk corr-—')ulm —n»ara
O CaaPoJala ‘o‘(, adoﬁ"rezsé'nra Gp
Jowhoms -

32— bk adAresses

K
232:.461 (%*ﬁa) mgmona Jo

B 2hk ™Y

aabions

2 - —
x mo-bu addresses -
g %)if"__'j (te;(_a_)_/lDCD,t‘:Om .
S The Mumber e} o colions m.F“reso,n'il dho alxe dbthe addms
rpoe d, the cﬂrﬂPu.QEJu : |
Psocston :
K- bck
MAR addvers bus Memery
D
Nn-bt
MDR i e [> up lo 2¥ addwssable
| Locahons

Word lenaﬁv: n b

< b

Cormtavl Lines
(R/W/ MK’, Q{C)

* Ve e mem M\Lt%a_bléc’c))
o> -

Fakes bla Yo Ure .
place —th ua\'\’?‘ﬁ@) bwe procaner Aeg blous
Addres Qa@&b&u)

— Data J':Lambu, between he memoma apd the proausy

\n) MAR (I\/\zmo'a
W) MDR (Memo'sa Daka Ro»a&t&)

=3 mamOTa ek Uth’ 2
x fpu}&r\a a memoT'd o—dd&;
beliveen “He memo
_Ta M\&b@, bakos ploc
_k o.da"w Jwrw&
| —n daka Lines
_ Busr wncusles the _conlspt Jines Jor coorckine g | e

% Read [wmlz (RIV
o I*‘lerﬂo”f(j {:mnch"cfﬂ CDTYLPW CMFC)

Two Gr'pelaflomg
(1) R :
T . peota & rebueved fpom te namory
e M _hmgh, Aaka =6vomﬁuz m.emo'ﬁ ba
_ Looding Hhe cddra % The Hagpurad mamany
pcation e Hae MPR J‘-Q-a»{)tvg
— aedting e R/W e S5
~the memory Responds by- Pleeng

ba'wahru& Fha MFC/SLéme
% Opon Swcaipt o tha MPC B 2nal , The proee’ Lo

The Aate onThe &

sl Aaka, (b a memay locakion béj

— The pro@so”
J.oacﬁng Ao oddrers b The tocation .
and

» T4 eod on o e?epwxiom chvolye consecubie addxes
“HPon « block mbEJL"

Nowbions e moL? remoy,
eperakion CAM bo perdprmed D which e m«ia oddras
sent to “The mn-mora oy The o2 “hat CoQanB,f,ie,t FHe buu;l?
| tocation
e elode -
a clock or

X Mamcmd a.ceprses mcud be ;gaﬂdmw “”‘“ﬂﬂ
sy mosy be Conbroled Wing Apeciol },[8’\0..0)) Thalt
Conbol Franshers 9 e bus. |
i Bpead: — o = ‘
SIS e that elapses behwesn tpa amitiabion DT
lefro%1 cﬂ;'ﬁ"at operabem

spexaki o and Tthe emp

. Memory Accans Tomne:
_U*T‘Fu e beluweon The Read o0 Mpcxicdngb.

% Memory M % Rl
. : X > e
_ Mornume™ time Mo-a)\iﬂ/umd belroecon

srukohon o) hwo guceotsive nmrﬂmd
‘e Wb J.onaa, Fhan The ol Bre -

~ dCCQX% Tmmja

ok 6 Called sandom
4 Jocobow L be A ccoMed -bo"ra Road or wnlz
eperabon on Some «bbﬂw\ amount b bHme —that o
Cn‘ﬂ"[’%oﬂ"”t o the Ldoakin s addron -

eachs MemoTl:

* _A”;ﬁmaﬂ "

FHre lCU'-aQ)L,
PrOQISOT .

holds The - umr’m.r)Hﬂ e chive ,seammbs o a
Pjoafa_m q_n(ﬂ W cQo.ta

x Used B Jwduece the. menno aceass Hma. .
viihuol M™Memory o Ln Gwase Tha (%'17¢deﬁ?\zp}\:dg'pcaj, marmoTy

. 7 P .
o 2 Daka may be Atered Pkﬂﬁ»'&ﬂ ey -«LO(g_h. .ona

\‘ Fhat bave oaddresses allb'ewn?: 1)707*" THhese &peo-buzd
| ba e P@((jmm-
i) |

d Virheal or ﬂvﬁ«mﬂ addvess :

| — An addvew aanmatz_gl bd
i a The vohual eaddress space (BN .

) wWhene Adaka @e &

Ph'ds\mﬂ rrna_mora

B

peot memony That b dkeld s

a\lowex Maen mnrnond and “a

The procatser.

) onlo the
Wpeco 522
Alored .

. ° wncion
Caplament mappl 1 .
Thawia_ppuﬁ %unoﬁo;ﬂ can ke e)wanﬂed ol wt\a .
- WaTam T o_cc,oﬂrcﬁl’% \‘6 Aﬁsbzm Sequiramsh

Memo"ra
I I
Pﬁmazj Meroor d o SéC.mﬂcla;«a&; - Me mma
L ‘ (-
% 3 : : %"
AM - M rebc op B @_’
’ I "o gi?f.ragg el Y;)
- | (Diks Tapes) (D .
| (Sta,h\c ED mm'\C
f AN A1)
PROM EPROM EEPRO

S

.MEMORY TECHNOLOGIFE

1) Types of Mcmories
Primary Memory
RAM ROM
—PROM
’ —EPROM
SRAM DRAM L »EEPROM
Volatile Memory(RAM)

N - is lost 1s
- Memory that loses its contents when the computer is switched off or if the power is lo

called as volatile memory.
Random Access Memory(RAM) is a volatile Memory. It is also called as main mecmory,

Primary memory or system memory.
In RAM, the informations arc accessed and stored randomly. It is possible to perform both

read and write operations in RAM,
Types of RAM - 1) DRAM(Dynamic Random Access Memory)

11) SRAM(Static Random Access Memory)

Non-Volatile Mcmory(ROM)
Memory that does not lose its contents when the computer is switched off or if the power is lost

is called as non- volatile memory.
No need to refresh the memory content periodically.
Read Only Memory(ROM) is a non-volatile Memory. It is possible to perform only read
operations in ROM.
Types of ROM - 1) PROM(Programmable Read-Only Memory)

ii) EPROM(Electrically Programmable Read-Only Memory)

i1)) EEPROM (Electrically Erasable Programmable Read-Only Memory)

2) Primary Memory technologies

* There are four primary technologics used. They are
I) Static Random Access Memory (SRAM).
IT) Dynamic Random Access Memory (DRAM).
IIT) ROM and Flash Memory.
IV) Mdgnetic Disk.

.2.1) SRAM (Static Random Access Memory)

* Used for cache Memorics.

* Volatile memory and it holds the data as long as the power is ON,
* No need to refresh at regular intervals.

Faster and more expensive than Dynamic RAM(DRAM).
* SRAM usc 6 to 8 transistors per bit,
2.2) DRAM (Dynamic Random Access Memory)
* Used for Main Memory.
* Need to be refresed at regular intervals,
Very sensitive, if power off, it will loss all data.
Stores each bit in a storage cell consisting of a capacitor and a transistor.

Types: 1. Asynchronous DRAM 2. Synchronous DRAM 3. Rambus Memory.
a. Asynchronous DRAM

DRAM’s stores all the charge on a capacitor and must be periodically refreshed.
That is why this memory is called dynamic,

Asynchronous DRAM is faster than synchronous DRAM in sequential operations .

In DRAM to refresh the cell, we read its contents and write it back. The charge can
be kept for several milliseconds.

b. Synchronous DRAM

* Insynchronous DRAM, the memory is synchronized with the processor's clock speed.

* The fastest version is called Double Data Rate (DDR). The latest version of this
technology is called DDR4.

c. Rambus DRAM

* Rambus Dynamic Random Access memory in short called as Rambus memory is the
fastest type of computer memory available. Standard RDRAM can transfer data over 1
GHZ.

* RDRAM is used for video memory on graphics accelerator cards.

Difference betwween SRAM and DRAM

SRAM DRAM
| Information is stored in Flip Flop Information is stored in capacitor.
Used 1n cache Mcmory Used in Main Memory

Information will be stored as long as the power is ON|Information may be lost, if power loss.

No refreshing is needed Refreshing is needed
Less packaging density High packaging density
More complex hardware] Less complex hardware N

More expensive Less expensive - |

2.2.3) ROM and Flash Memory

®

Read Only Memory (ROM) is a non-volatile Memory. It is possible to perform only read

operations in ROM. No need to refresh the memory content periodically.

Flash Memory is Erasable and rewritable

Types of ROM - i) PROM(Programmable Read-Only Memory)
ii) EPROM(Electrically Programmable Read-Only Memory)
iii) EEPROM (Electrically Erasable Programmable Read-Only Memory)

i) PROM(Programmable Read Only Memory)

« The data in PROM is permanent and cannot be changed. Permanent data and programs
are stored in PROM .

« PROM are faster and less expensive:
ii) EPROM (Erasable Programmable Read Only Memory)

+ EPROM (erasable programmable read-only memory) is programmable read-only
memory (programmable ROM) that can be erased and re-used.

Advantage: Its content can be erased and re-programmed.
Disadvantage: When erasing, entire EPROM chip content is crased.
iii) EEPROM (Elcctrically Erasable Programmable Read Only Memory)

-" EPROM (crasable programmable read-only memory) is programmable rcad-only
memory (programmable ROM) that can be erased and re-used using a electrical signal.

Disadvantage: Different voltages are needed for erasing, reading and writing the data.

Flash Memory

« Flash memory is a type of EEPROM. But still there are some major difference between
EEPROM and flash memory.

+ In EEPROM,itis péssible to read and write the contents of a single cell.

+ In Flash Memory, it is possible to read the contents of a single cell, but during writing
operations the entire block of cells must be written. The previous contents of the clock of
cells must be erased before writing.

e There are two popular high capacity flash memory devices are Flash cards and
Flash drivers.

Advantage : i) Flash memory devices have greater density.
ii) Higher capacity and lower cost per bit.
1i1) Consumes less power in their operation.

iv) Flash memory usages in various devices.

b7ﬂbé blﬂjl bo_l;‘ja
w(] -
AO - wl ’—m—‘ _m—‘ ﬂ_
AL Address Memory
decoder : . : . . . cells
A, —=
Ay — /
Wis | .

1 [1 [1

Sense/Write Sense/Write Sense/Write [R/W
circuit circuit circuit - S

T T 1

Data input/output lines: b5

Figure 8.2 Organization of bit cells in a memory chipA

>

<]

Word line

-+ Bit lines ——m—=

Figure 8.4 Astatic RAM cell.

Bit line

Word line

L

T
Connected to store a0
P ———
Not connected to store a 1

Figure 8.11 AROM cell.

2.4) Disk Mcmory

* Provides huge amount of cost effective storage.
* Holds enormous amount of data (i.e. hundreds to thousands of gigabytes).
+ Takes millisecond to read information from a disk.

* Hundred thousand times longer than DRAM and a million times longer than from
SRAM.

2.4.1) Performance Measures of Disks
The main measures of the qualities of a disk are

1. Capacity
2. Access Time
3. Data Transfer Rate

4. Reliability
i) Capacity

* The storage capacity of a single disk ranges from 10MB to 10GB
1i) Access time

Time from when a read or write request is isused when data transfer begins.

* The time for repositioning the arm is called seek time, and it increases with the distance the
arm must move.
* Average seck time is the average of the seek time;

* It is measured over a sequence of (uniformly distributed) random requests, and it is about
one third of the worst-case seek time.

“iii) Data transfer rate
* Rate at which data can be retrieved from or stored to the disk.
iv) Reliability
* Measured by the mean time to failure
+ The typical mean time to failure of disks ranges from 30,000 to 800,000 hours

MEMORY HIERACHY

* Multiple levels of memories is called memory hierarchy.
« A memory hierarchy is classified based on SPEED, SIZE and COST.
* The faster memorics are more expensive than the slow memories and they are smaller.

* Asthe distance from the processor increases, the size of the memories and the access time both
increases.

* The memory hierarchy is
1) Processor Register
11) Primary Cache (or) Level 1 Cache
i11) Sccondary Cache
iv) Main Mcmory
v) Secondary Memory

i) Processor Register

The speed of the data in the processor register is very fast compared to other memories.

- The size of processor register is very small compared to other memories.

The cost of processor register is very high compared (o other memorics .
i) Primary Cache (Or) Level 1 Cache

* Aprmary cache is placed between the processor register and secondary cache (L2 ¢ache). It is

referred to as Level | cache(L1). It is larger than the primary cache. It is usually implemented
using SRAM chips.

The speed of the data in the primary cache is faster than L2 cache but lesser than registers.
* The size of primary cache is smaller than 1.2 cache but higher than registers.

* The cost of primary cache is higher than L2 cache but lesser than registers,

.

Primary cache holds the copies of instruction and data that are needed for current execution.

iii) Secondary Cache (Or) Level 2 Cache’

* A sccondary cache is placed between the primary cache(Level 1 cache) and Main
Mecemory. It is referred to as Level 2 cache(L2)

Itis larger than the primary cache.
The cost and the speed is lesser than primary memory.

* Itisusually implemented using SRAM chips.
iv) Main Memory

A main memory is placed between the secondary cache and secondary Memory.

- Itis larger than the secondary cache. The cost and the-speed is lesser than secondary cache
but higher than secondary memory.

* This is large memory and is implemented using dynamic memory components like
a) Single in-line memory module(SIMM),
b) Dual in-line memory module(DIMM)
¢) Rambus in-line memory module(RIMM)

Processor

Registers

Increasing Increasing Increasing

size speed ~ cost per bit
Primary

cache L1 k

|

Secondary
cache L2

Main
memory

Y Magnetic disk
secondary
memory

Figure 8.14 Memory hierarchy.

V) Secondary Memory
. Magnetig disk storage units are called as secondary memory.

* The size of sgcondary memory 1s very high, the cost is lower and the speéd is very slow compared
to other memories.

Characteristics of Memory_

M e gPQ&A (ost Size
LD Resolt | Highe | Wighe | vy Lo
PR e L Mgk | high | Low

&ecwwlcuy Cache (L?) L ow Lovw W

i B I)ﬁ"mﬂ,&:&f cache
Maur Mume sy Lowet Hue |] e Hha
3€Lowfauj [J—'\CI(L getf’ﬂdw“j CA["\L lJﬂ:S['\

vy Low | \/@Lj Low H"j e

h 1

Ee c,ovxdcutj Wmo%j

MEMORY MANAGEMENT

* The task of subdivision is carried out dynamically by the OS and is known as memory
management.

* Uniprogramming system:
© main memory is divided into two parts: one part for the OS (resident monitor) and one

part for the program currently being executed.

* Multiprogramming system:

o the "user" part of memory is subdivided to accommodate multiple processes.

i) Swapping
* Three types of queues:
1. the long-term queue of requests for new processes,
2. the short-term queue of processes ready to use the processor, and
3. the various I/0O queues of processes that are not ready to use the processor.

* I/O activities are much slower than computation and therefore the processor in a uniprogramming
system is idle most of the time.

Loomg-te rm Short-term
e queuc

1o 1

e curs
O 1 Quene
140 2
Oeeurs
IO 2 Quene
L]
-
.
140
Oeeurs
LA i Quene

Figure 8.11 Quewng Diagram Representation of Processor Scheduling

* Memory holds multiple processes and that the processor can move to another process when
one process is waiting.

* But the processor is so much faster than I/O that it will be common for all the processes in
memory to be waiting on I/0.

* Thus, even with multiprogramming, a processor could be idle most.

Solution is swapping
* along-term queue of process requests, typically stored on disk.
* These are brought in, one at a time, as space becomes available.
* As processes are completed, they are moved out of main memory.
* Now the situation will arise that none of the processes in memory are in the ready state (e.g.,
all are waiting on an I/O operation).

Main
Disk storage TEMOry

Operating
system

Completed jobs

/_.—'ﬂ and user sessions

(a) Simple job scheduling

Disk storage

- Main

Intermed iate ICmory
quene Ty
“"-ﬁ\\\ syslem
[
“-\“\-___ Completed jobs
Long-term . | onan i,
quene [/""
piinig
(b} Swapping

* The processor swaps one of these processes back out to disk into an intermediate queue.

» This is a queue of existing processes that have been temporarily kicked out of memory.

* The OS then brings in another process from the intermediate queue, honors a new process
request from the long-term queue. Execution then continues with the newly arrived process.

ii) Partitioning
* The simplest scheme for partitioning available memory is to use fixed-size partitons.
* Even with the use of unequal fixed-size partitions, there will be wasted time
* In most cases, a process will not require exactly as much memory as provided by the
partition.
o For example,
= a process that requires 3M bytes of memory would be placed in the 4M partition,
wasting 1M that could be used by another process.
It leads situation in which there are a lot of small holes in memory.
As time goes on, mem becomes more and more fragmented, and memory utilization declines.

One technique for overcoming this problem is compaction.

A process in memory consists of instructions plus data. The instructions will contain addresses for
memory locations of two types:

*Addresses of data items

* Addresses of instructions, used for branching instructions

A logical address is expressed as a location relative to the beginning of the program Instructions in the
program contain only logical addresses.

A physical address is an actual location in main memory. When the processor executes a process, it
automatically converts from logical to physical address by adding the current starting location of the
process, called its base address)

Operaiing } o Operating Operating Operating

sysiem sysiem sysiem syslem
Process 1 20 Process 1 20 Process 1 20M
b 56M Process2 |~ [4M Process2 | >~ 14M
36M

Process 3 18M

4M
(a) (b} () (d
Operaling Operating Opcrating Opcrating
sysiem syslem system syslem
Process 2 14M
Process 1 20 Process 1 20M 20M
oM
e Process 4 &M Process 4 &M Process 4 X
1
M 6M M
Process 3 18M Process 3 18M Process 3 1EM Process 3 18M
4M 4M 4M 4M
(e) (£ (g (h)

Figure §.14 The Effect of Dynamic Partitioning
iii) Paging
* unequal fixed-size and variable-size partitions are inefficient in the use of memory
* Suppose, however that memory is partitioned into equal fixed-size chunks that are relatively
small, and that each process is also divided into small fixed-size chunks of some size.
* The chunks of a program, known as pages, could be as signed to available chunks of memory,
known as frames or page frames

Main Main
mMemory memory
Page 1
Process A 13 131 ora
Page 0
Page 1 4| Page2
2 14 14 of A
Page 3
Page 3
15 151 araA
In In
16 o 16 —
Free frame list = Free frame list =
13 20
i 17| yse i
15 Process A
;‘; 18 page table 18 Pzﬁ“
19 In m 19 In
use m s
I m 20
(a) Before (b} Afer

Figure 8.15 Allocation of Free Frames

* Ata given point in time, some of the frames in memory are in use and some are free,

The list of freeframes is maintained by the OS. Process A, stored on disk, consists of four
When it comes time to load this process, the OS finds four free frames and loads the four
pages of the process A into the four frames page

Example, that there are not sufficient unused contiguous frames to hold the process. Does this prevent
the OS from loading A?
The answer is no, because once again use the concept of logical address.

A simple base address will no longer suffice. Rather, the OS maintains a page table for each
process.

The page table shows the frame location for each page of the process.

Within the program, each logical address consists of a page number and a relative address
within the page.

Main
MEmory
Page 1 13
of A
Page Relative address Frame Relative address Page 2 14
number within page number within frame of A
Logical \ / Physical \ / Page 3
address EEI address | 13 . of A 15

17
13

of A 13

Process A
page table

Figure 8.16 Logical and Physical Addresses

That refinement is demand paging. which simply means that each page of a process is brought
in only when it is needed, that is, on demand.

Thus, at any one time, only a few pages of any given process are in mem and therefore more
processes can be maintained in memory, When it brings one pag it must throw another page
out; this is known as page replacement).

iv) Segmentation

Segmentation allows the programmer to view memory as consisting of mul tiple address
spaces or segments.

Segments are of variable, indeed dynamic, size.

The programmer or the OS will assign programs and data to different segments.

There may be a number of program segments for various types of programs as well as a
number of data segments.

Each segment may be assigned access and usage rights. Memory references consist of a
(segment number, offset) form of address.
This organization has a number of advantages to the programmer over a segmented address

space:

1.

It simplifies the handling of growing data structures. If the programmer does not know
ahead of time how large a particular data structure will become, it not necessary to guess.
The data structure can be assigned its own segment and the OS will expand or shrink the
segment as needed.

It allows programs to be altered and recompiled independently without requiring that an
entire set of programs be relinked and reloaded. Again, this is accomplished using
multiple segments.

It lends itself to sharing among processes. A programmer can place a utility program or a
useful table of data in a segment that can be addressed by other processes

It lends itself to protection. Because a segment can be constructed to contain well-defined
set of programs or data, the programmer or a system administra tor can assign access
privileges in a convenient fashion

Cache Memories

M&?P“L‘ bioh el h"‘Pm“\t -l:ed\hxq/LLeb.

——————— i e g e R e I ——

* Cache mmj‘ia
* Moppirg huuection

* Dinet
¥ Arsesiedine
% feb - abdocistive

ok Ra_PLq.ceh\er\-\: C\lﬂok&\‘m\
U

© ! Ceadhe menwo)\\z\

S*T\\e &Pee& '1')@ Hhe h'\cxm \’nermxd G
.Uﬂ cﬂmpcwmh \mﬂm H'\E.):.Peec\. C(b g desn

\lemd'l_um
precessons - JRTRRE
-'KTLe' precetioh | cannek Aperd tuch. oh ity bime
Weibieq e occers Arbudion | end dlatn |,

s premely |

% Herce it & drportane g ;L%Me
ot neducad the bime heeded .ko) crecens

the
\’\e-—_e_bb.r_\.)_a L‘T\bc»
*Ahe%_bmga\hmml:o%eq oAk
cache tnemmeiy Lishich, ebbenbolhd MoKet the yaly

'mmj oppeer ko the Precebbon L ke b“"‘t”‘

Hmn.ith%l-\?i.b.

Advantedes 4 cache !
—> Faslae tHhan Meaw Mamoy

—> lexn altem HMe
— 5 con pp axewhid o Ahout Mo

— Store Aeta 50:’ mrofa-l-ﬁ LA L

DG advantages Q])__cad“_i-_ :
> Lirulked C“Fa&’tf
- vwk mpwfw

AN

laeT\xe efpeetrerett oh Be cade mechanim G
‘:\ci\bec\. oh e Propedy ojﬁ @WQA prgrams
Coled ety o eforerce
* Twe hﬂ)@’ b Lﬁwhbﬂ CJ@ nepenence .

* Tehch»Tc.kL Lowm:d Ub %&be’ﬁm@-l Resed o

® &PokmL JMba :-AB Nefensrce (B mima
* lovporal ospet of dhe oy of hjgj:g
Aiqgerk Breb uhenesen an lnpenmoiion fkem
Lmbudion on data) & BoE heeded |, Hhiy them
Arotld - be breught (e the cache Ushore ik
Ll ‘m?e!@m% nemain LeEL & B heeded @gein
K The Apsial eupekt Roggertt | bhas LhM:Ec»::\. 4
em\mn Juak ol ke e he Wmm'merma\ﬁ
ke dhe cache ¢ X O tnekul ko bétr_h}beu@ql
Uerma ARak 'gﬂe&d@— ok ﬂéj¢ C\dcb\e}sbﬁb .

kWS el we e ke bmek J\Qbr@ -

el °'J® W%Um ‘ﬂdcbtebzs Lccuhtshé oy Acime dize

:.ﬁkgm:d\eh Jown Hrak O ubken Uned Loa\e_bq

P e " ek Us Me.

=% Pmcebbc?_ ._LthLeJ: Recd CU*:L \-UN&Q hécrLeAh

H\e 'rY\eh'm)\Jz‘

J# THe cmche conddel <houit debedmines Ushether

ek
)\SCVJ.EA.\: o C-\naxa\\:ba exhk Un the

Cache

* 3 the ‘h&v_LeM:SA. Wadxd &t Hhe ecache
& b a MNead AN WiNke hat -

%-ﬂne deata P‘heher\i: dn the C.cud\
CQLLéA cache Wik .

| T\\e- c\aJ;cL 5N cy’b\:g;;mc] %}cm Coreh ' ik
| ‘ .
Hhe e

HF Car-\\e T‘(\emo | -
Nd \’\G\.c\. a Ehe | cesnt
l Fhe oo hherng Nd QﬂP}j ‘ | ™ Qrb

ey

‘»\‘: Waxke k& can he c\ane Jn :hm ‘

% S Winke W Tc»{c:crt e
| ® Wnike back “encopy baik m&mt
.N:_ r{-_\mou—?d\ Drotest - P

| The: = @asiz decaiin ord. bhe i b
Wnde back on Copy bedk Prcrbotnt |

* bﬂ'\e - Aecerd %:ec_\’\m.cvk.\e B ko LJ.PQLoJ:e cn\L;a
e codne Jema¥ien cm:L ’Do \”‘Y\CL)_K __-}c o L\Pd(d:e";‘
UAER an aAbcclaked ‘@Lm-ﬂ bk | ﬂbier\ Called qlu\gcj;l:,

vasJaxec& INES .

*% T\\e rasn . erre ‘c}:nhlqh |

. . Nd Crb PRe uoncl
\-\‘)d-ai Lc.tkem bhen the Blecic ccrh&cuu\ma

thar eoled word g '
tD ' lle her‘rn\,
ed b}m’n

: the Q_c__r_he bas WK boh e heud 'DJ-G‘_K

5\‘: N‘NJEE OP@C!jlﬂh Can 133 C\the NN .J:Luo chuz,s .
% \Wnike W Pmeb:m{
! % Wnke ok Petocel -
Q)N)_\:\,:,e E}v_mj& pmﬁm{
i .ﬁmuﬂﬁ-\ Poicel G Uaed dhep AT

e rain . nero eve’
;,) b &= Updabed ddectly

;Nmb@d«w\bmwww

oddnesred Luoh:L W b.u»’d: ‘D"G\J\%&t Undo H\e cerche
N everwnttken -

Mopprg fuection
The w»cﬂnPu\cabmthom e Ubed b tap @

'poabtu\@\ bl ecl< crb oun H\ermmd be <o Po:\l:itdm

@) Dinect N
.*;_\'Le é h\PLeAS: \-UCU-A o detowmine cache LchltLoh
o whish be dbee tneory bles G the

Aineck NELHJmca ’teAr\ch.Le

% Cache Contuling of 122 blecks o 16 worda

eod\..b:m oo hedal crb 204% (2K) werdy | and

arlime Tk bhe bneun #memqnd b acldneMable
by o 16 - bt addens -

% The woun hnerY\Q)\Ld hos @4 .

1

Main
MCmory

Block 0

Block 1

A

Block 127

Block 128

1Y

Block 129

1

kY

ta

Block 127 Block 255
Block 256
Block 257
Block 4045

Tag Block Word
5 7 4 Main memory address
Figure Direct-mapped cache.

Cale Main

- R \ i
O < R Q o9 NESG 9
| - o 3099
\ < \ s R ' & /
= 227 | S8 - Zang
| ‘ [
| Y
| ' AN SR .
1o - B S R S P
N e \ - S NP -
. | wlif | =S)

*T‘\e Jmczj bm) e—b an O-cldheﬁa ?\ELeUJecL

!

b:‘ht.sn\ H\e y P}v:aebhnh | e c,crh\{):med ?‘ bl'\e (70-3
sy Tl ke bleck Ub L:\ne Coche k:c. e 3
Hf\e | delded h\-r:.cK o P)\ eé@\h | CchleA CL/S_b.Q <admye

quwmma bnhﬂkm
| o* 3“‘ Jj“i fTEﬂ*”hB b&”ft“Ww cugﬁ kmmu< oh
Hne, roain W\evmc»odbt Can Pcr\:ej\bqu_lt; D\EAJ"de_" \u‘;

N"j ch_\'\ 'Dh:u;L(Po B

.x;\e_ﬂ\e COI:JD «‘fb (W m&we Cache s —

Cach

i
1

Block 4095
Tag Word
I 12 | 4 I Main memory address
Figure Associative-mapped cache.

c)d}e&. FAroucliue h'\gij.UZ

W\Dm?\ tﬁd\\‘\icv,\els Can be Uped o
R Blela S bhe cache o ‘ |

| | ¢ ?buped Ude Aehy
ol the

T Tepping ol o bl of) the
resh Memony ko hesele ANy bleck :’h

y - ; - . o = O, e -
Apectye Aok |

Yn ‘ i
& dhis care) herveny chqz\b 61.64,113 Aoz
|'Y‘OJP Lh‘ba Eﬂu;he /SQt CJ cJ\QL ‘"ﬂ\ﬂ"j Co.\-\
edhen ob H\e | 'b_uo H_c;q(Pohh Urk‘k)r\m H\ca ok
R R

S

CQL!\ B be_ /Ucphecl. an Cuuj P—LO(c‘b Aei_ -

-._\:h cache mﬂm»ﬂ .

Set |

Sel 63

Main

FOETTHITY
Block O
Block |
Cache -~ -
Block O
Block 63
Block |
Block 64
| Block 65
lae
Block 3]
Block 127
| lag
Block 126
Block 128
[tag
Block 127
Block 129
Block 40835
Tag Set Word
1] G 4 Mlain meamory address

Set-associative-mapped cache with two blocks per set.

Replacertent R\.%o)\iﬁ\rh

% When khe cache s Bl [and o bleck ok
Wwords heeds ko be J&:mabemecL o bhe
Moan \“ﬁexm)\ld , SAome bleclea "—‘-’b Words — dn

| Ehe coche ot e hePLU—Lce__ .

% Thi W dererrained tnd eplocement alge Xdhm

(Dk Sn = ddeck trapped codhe , khe poition of

each bl B pPredekerimuned |, herce

o J\QPLu(em@
l;&ﬂ‘&hecxlj exihtd |

I cliaiofive ewnd Aok - aMcriaiiine coches thene

'bhe coche ard ol Jhe poAidions

;emﬂ Asne b*e*”‘h“*ta

% When o hew bBleck 4 ko he bmuﬁh-_ “Udo
ok Jdk
mcu_d AN amne :@:\ the cache conbelen runk
desde Which of Jhe old blecld ko oventyiite .
¥ The pepoty of deolity of nefoerce un

) e e Io e heswrable
g When o Blode ol ko ke cvowniBen | W

Sermble bee onewwnke the one Jhax han ﬂ‘“\e
he J_ahaabh Dorre Wikhouk bUha thQﬁQtheL

colled. dhe leonk 3‘9"—@“'5\13 Whed bleclk |, euel

Be enipe @ ealled he LRU hgomimen

oNIhin

1o ube the LRU olgerbhm , dhe coche
Ccmbﬁ\LQJ\ ok JoodK .'heh,e_mxte, o aldl b.LcckA

cu; @h@mmpmeec\b —

,wb =s bcr\m IbLCLK /Bd ekh 5 /Se_l: CLMJQ:J.Q&\L,
. | { .

‘;chd\e v 2 bk CouJ\'EQJ\ tan bhe UJ:)eql

;):"ae\;\l\sehc /Q\Q: ccanrt , cotder ob U-u\e bleck bhak
)us hehehe_'ncecl B At by T

"*Ccmx&e)\b Wikh yvalles QNM Lenern dhan +he

pehohced ohe ane’ clechemerted. h‘d She | ard

Al Jdhe &then’ pemddn L el .

sz)a)'*mfh e ks wmqu het -

Courden - abbmoafed Wik hew' bleek lemded

@wmmma\% u.beactoo ma‘.\;@a

=} ol cHne:\ Courdess ede. “ncreated htj

Bk When a M O apdd per M‘blaq{
wdh the counten Vedue

Z O herrewec) 1 heagy
bleelt puk s ploce | oyl 'uu'cmnmmzset&
s The LRV eLLBDMH\m has been Lned ewcem‘mo
R Jeod ta - Peon Pﬂlhome ._u\ A-Cf:ka
Colred -

*Pubom\cute Q'b dhe LRU &Lacsidd\m can be

un{ymdbjmw?a,&hwmo-b
wmeh;) U clauc\u‘"a which bhleck te replece .

lk;%e,uem ‘othen Aeplacemenk ﬂ-\—cAo)\LH\m eone
olis Wed T dn Phadiee

A rbuiiocly heserabis e umwd be g
;D\ex:nd\le) dne ¥ oldest Y blerlc bxﬁm @&um&

%@Qhwblul(h\mh b)wuaﬁ\tw

%l;—\mpebeh\ bﬁc_r_uue ey ﬂl-'aew\d&\m dees et
doke frlle owcmunk ﬂ\e Necerk petbeny o
cccers ko Mlecks dn dhe | eoche, dt ub gerenlly
ek m,fﬁb%amc,m J:}\QLRL;,.@L:A@W,,&\

C,\rmm-ca dhe bert bleelds o demave, .

% The Ainplest . olgerdhm & 4 W

cheohe ‘Hae ,DLCC_k be: ke CNQ_J\UJZNCHLQ;\ p

-‘AQTL ,&,mel &L%G-Mﬂ\h\ has been b’gu‘"d
b e e chheckine pme "

¢

\/jvtucu, meroTy

‘Definition

* Tt b a technique that ue» Moun

mermory G» A lcache ' Hor Secondory
SUJYOQQ_.

* The tenm vivsual MEMoTy 'Yéf@S GO
Something which ppegnis to be prexent
butt oactuody & B et

% The vivtual memory technique alows
UPensS o uWe Mmoo)

hemory for

PTOQ'Y'CUY\ Jd:o_m the

COI"‘DP(‘_[,tej-(
Phusical Addvess = An oddvers cp vnouln Fzmory

Pryotection ¢
*It b @ Sett of mechonismS ‘§OY
ensusiing e multiple. pPryocesSses 8")031])’39

Yeal m@j"ncyrg of A

the pryocessor, mgmary or Tlo devicex

caot interface ‘mi;@ﬂti'onauﬂ oY
unintentionally — with one anothen by
'Yeadirg or writing each othen's daka .

The Mmechanism - adzo Solote the OP@Taﬂ"’S

U3 0CeS
Pa,qe Fouut - P S

- An G-Ye.nt “+Hhat Occuos when an chpaﬁga
not present en m™aun merrma,

Virtual addresses Physical addresses
Address translation

Sy

AL

Disk addresses

FIGURE In virtual memory, blocks of memory (called pages) are mapped from one
set of addresses (called virtual addresses) to another set (called physical addresses).
The processor generates virtual addresses while the memory is accessed using physical addresses. Both the
virtual memory and the physical memory are broken into pages, so that a virtual page is mapped to a physical
page. Of course, it is also possible for a virtual page to be absent from main memory and not be mapped to
a physical address; in that case, the page resides on disk. Physical pages can be shared by having two virtual
addresses point to the same physical address. This capability is used to allow two different programs to share
data or code.

first word for typical page sizes, leads to several key decisions in designing virtual
memory systems:

B Pages should be large enough to try to amortize the high access time. Sizes
from 4 KiB to 16 KiB are typical today. New desktop and server systems are
being developed to support 32 KiB and 64 KiB pages, but new embedded
systems are going in the other direction, to 1 KiB pages.

m Organizations that reduce the page fault rate are attractive. The primary
technique used here is to allow fully associative placement of pages in
memory.

B Page faults can be handled in software because the overhead will be small
compared to the disk access time. In addition, software can afford to use clever
algorithms for choosing how to place pages because even small reductions in
the miss rate will pay for the cost of such algorithms.

m Write-through will not work for virtual memory, since writes take too long.
Instead, virtual memory systems use write-back.

m meuo Apace ard G ULQMW bd
‘:?ima.l MAWM w2
trans\o:tloﬂ

acltersed .

mqpp'\ng . The pvocess by

the translotdon of the

Virtual address

3130292827 +-orerreraniinnnianaans 15141312 111098 ----ccveves 3210

¥ Tt also called addsess
which &

Virtual page number Page offset

PloNoT: W i SR 15141312111098 - p----- 3210

Physical page number Page offset

Physical address

NiTtual addvess % An address —thak corvesponels o @ oation

addvoss TO=PNG

' an
VittuoL oddmess b mapped to
oddsieas ued to QCeess mnamoTy .
¥ Tn vivbuak memovy, the oaddsess O

broken nto Q Vintual page NUNNCETT

ond O Page offset - Figuse Shows
vivtual poge.

hwnbes tp o physical Poge. mimtg“'

FIGURE Mapping from a virtual to a physical address. The page size is 2"

4 KiB. The

number of physical pages allowed in memory is 2!, since the physical page number has 18 bits in it. Thus,

main memory can have at most 1 GiB, while the virtual address space is 4 GiB.

EI.}‘C.\ LI Ll I.I.I.EE ALLLLL L3N WL UL l-’ll.b“ﬁ: LALLFIC. BLE LBLLYN I.I.EI.I.I.‘E:. L t-'II.E'E: ALLL Ly I I.'.] LS LPL " ESLAR LEIC WL LLLAL
address space is 2 bytes, or 4 GiB, and the physical address space is 2* bytes, which allows main memory
of up to | GiB. The number of entries in the page tableis 2 or 1| million entries. The valid bit for each entry
indicates whether the mapping is legal. IF it is off, then the page is not present in memory. Although the
page table entry shown here need only be 19 bits wide, it would typically be rounded up to 32 bits for ease of
indexing. The extra bits would be used to store additional information that needs to be kept on a per-page

basis, such as protection.

Foge number ConsStitude.
the uppen powion Of the physical_,raddiﬂess

while the page OFf Set , which » nob
charged., corstitudes the lower poYtion .

2 The physSicak

£ The nrnuvben of biks o e PAge
sot fieldh detesmines the poge Size .
The numben of poge addsessoble wrth
the wivtual oddsiess need not motktch the
numben off pages addsessable. wrth e

Prysicol addsess .

092 |
£ Both the vmtual ‘memovy ond e
DthiCCLL - memoTy ose byoken U’\tD paged. So
thot a | vivtuod poge © rmopped o A
Physical add=ess -

o Physical page» Can be gorad. by hoving
two vittual addness ‘po‘l.r\t o the S
Physical addsiess. The copablity O wsed T
ollow o diffenent - progams to S
dotta. oy code -

Segmentation

| Tt O a Nooudble
Mapping Scheme v wlhich an addoess
%Cons'lst: of {wo posks: o Segment N,
gwh‘:ah'w Mapped to a prysical addness
and Segment ofp et

qze odd>ess

Rg9e taple |

LTt b the tokle containing the
Vituol. to physical addsess tanslations
O o Vittual weroory - Sgstem

t

¥ The toble which (& Smoved v MEMOY
b twypicallyy indexed by the vintuok PAge
humben} each orkyy (n the todle Contain
Physicol. page numikeyy foy the vivbuod

Page it the page b cuomentsly o2
mMmemovy -

Page table register
Virtual address
31 30 29 28 27V.cvviviiaiiinnnnn:15 14 13 12 11 10 9 8 eeee-e 32140
Virtual page number Page offset
420 412
Valid Physical page number
L] L
Page table
J18
If 0then page is not
present in memory
29 28 2T crereriimrrerniainieennirand 15 1413121110 9 8432 1 0
Physical page number Page offset
FIGURI KiB. The
number Physical address it. Thus,
main m
FIGURE The page table is indexed with the virtual page number to obtain the

comresponding portion of the physical address. We assume a 32-bit address. The page table pointer
gives the starting address of the page table. In this figure, the page siee is 2" byles, or 4 KiB The virtual
address space is 2 bytes, or 4 GiB, and the physical address space is 2* bytes, which allows main memory
of up to 1 GiB. The number of entries in the page tableis 2 or | million entries. The valid bit for each entry
indicates whether the mapping is legal. IF it is off, then the page is not present in memory. Although the
page table entry shown here need only be 19 bits wide, it would typically be rounded up to 32 bits for ease of
indexing. The extra bits would be used to store additional information that needs to be kept on a per-page
basis, such as protection.

XThe difficultly v wing fully asseciative.
Placerment i locating Q» entry, Since s
an be onywhese (5 the upper level
of the highoswchy. A full Seosich
impYyactcol

¥ In vivtwadk memory Systems, e locote.
Poge» by wWINg A toble. thatt indexes
the memovy ; ths Stwuctuse ©» codlad
Q Poge tope and (E qesides o Mermory

Page tabe egisten

¥ To indicote . the locotion of the
Poge tade O memory . e hosidwane
nclude» o Yegisten tHhat ponts to the
Stk oF Poge table ; we coll thiy the
Poge tode negistes;.

¥ When o page fouuk occuns,
{Poges 0 main memory arne & Wwe, the
operoling System MUt Choose O - poge to
eplace

¥ OUSing the pm)t:' o predicate e
futuse opexating System follow' the least
vecontly wed. (LRO) Yeplacements Lheme . The
joperating System Seosichen, for the leask
Yecently Used Page , assuming thot Q

Page okt has Not ey wred ¢ long Hime,

time O less likely to be needed than
Q Mmove Yecontly — accessed page. .

|

Swop Space

TTE B the gpace on te dibk
Teeved. fov the full Vvivbual agsgerd
SPace of o Pprocess

Reference b

Tt b oo colled we bit. A feld
that) Serl Whenovon O POQQ- 5N

-
addessed ardl Hhot i wed to tmplements
LRU oy othex aeplatementS Schomes

Virtual page
number
| Page table
Physical page or Physical memory
Valid disk address
1 -—_
1 .‘'_.___,:.-.._—__‘
-1 '_‘_‘—-—u_._‘___
1
0 & _—
={1 r"\ / L
1 —
0
1 v Disk storage
9 « T
0 t.,(\-q,q__‘_____,_,__ﬂ-—/
9 ¢ T \‘| |
o,
| |
| |
~N
FIGURE The page table maps each page in virtual memory to either a page in main

memory or a page stored on disk, which is the next level in the hierarchy. The virtual page
number is used to index the page table. If the valid bit is on, the page table supplies the physical page number
{i.e, the starting address of the page in memory) corresponding to the virtual page. If the valid bit is off, the
page currently resides only on disk, at a specified disk address. In many systems, the table of physical page
addresses and disk page addresses, while logically one table, is stored in two separate data structures. Dual
tables are justified in part because we must keep the disk addresses of all the pages, even if they are currently
in main memory. Remember that the pages in main memory and the pages on disk are the same size.

|
Trarslation - lookaside. Rufros (+)

— .,

K Tronslabon lookayide Buffen (TLR) O
Gache that keps trock of yocently wed
oddsess rappings o tvy to avoid. an
QCcess to the poge table

TLB
Virtual page Physical page
number Valid Dirty Ref Tag address
I |
101 .-
jl :‘l 1 S Physical memory
JT0[|
0(0]0
1(0]1
Page table
Physical page
Valid Dirty Ref or disk address
]
- 1|10]1 —
1{0]0 o i
1100 — M
1[0]1 o
101 C |
1]0]1 o~ /S
0[0[0 7 |
1[1]1 ¢ d |
1111 « ~
0[0j0 —~
1[1]1 v

FIGURE 5.29 The TLB acts as a cache of the page table for the entries that map to
physical pages only. The TLB contains a subset of the virtual-to-physical page mappings that are in the
page table. The TLBE mappings are shown in color. Because the TLB is a cache, it must have a tag field. If there
is no matching entry in the TLB for a page, the page table must be examined. The page table either supplies a
physical page number for the page (which can then be used to build a TLB entry) or indicates that the page
resides on disk, in which case a page fault occurs. Since the page table has an entry for every virtual page, no
tag field is needed; in other words, unlike a TLB, a page table is not a cache.

5 Pecowre wie QeCess the TLR ingteadl
of the poge twable on eveny Yefonence,
the LR will need o include Othes;

Stots bits, Such a» the doty ord the
Yofoence bitS .

Reforence. Bit:

¥ Tf we get a hit, the physical P9
nunbes » wed to form e oddess, ancl
the comesponding ~ofoente bt O tusined on .

Divty bit

X IF the PYOCLSSO» {3 Pes1 fovm) ng o

wite ,the dity bic » albo tusned on-
If a miss

& the TLB occuns, we st
th@"m’]he UWhetho (_,t (s, o page .FOJ_LLE oy

F I£ the poge exist (n MemoTy

then the TR miss indicctes only thaks
the borslotion
O, ‘e
MISS bb’

mMissing . In Such

pocesser Can handle the T
lbading the

the page toHe
then tyng the

Brarwlation or

Tefenlnco. agalo |

Twe poge foult:

£ Lf the page @, not Pyovent ie
merovy ther the — TLR misg indicates

Q tue page fouut .
¥ Tn this coxe, the PYo@nor

INVOKEX

the opeoking System Wwing AN excepton
Docawse +ho Ty hay many TeWS)

ontries tham the rno.of Pogey & MO
YY\@)’YWO’YB

£ Aftesr. & TLB _ miss occung and the
MISSINg farslbion has baon Yekvieved.
fron the Ppage takle we will heed. to
Xleck o0 TLB enbly to Yoplace

k Some Systerms Wwe othen technigual
to appvoximate the nefenerce ond Aoty
bits elminating the nad o write OO
the TR extopt 1t load A hew oo
enby on Q miss

Virtual address

Wirtual page numbsar

Page affseal

]

412

Walid Dirly Tag Physical paga numbar
TLB Ch—
@]
TLE hit =—= (=) I
(=) —1
=
20
Phnrsical page numbar | Paga ofsal
Physical addmss Biock
Physical addrass fag | Cache index affsat
J18 J8 J4 ‘F
48 1
412 Data
Walid Tag
Cache
— ¥ L
(z
@
Cache hit «—(_ |-
e g
432

Data

Byta

oftsat

* vivtuoly oddswssed mope b cache that
(3 accessed with a - virtual addsiess ~athes
thor a physical addsess |

_Physicolly oddsessed. cache o coche. Hods
B addressed by a Physical oddswess

Virtual address

TLBamessl

TLB miss
exception

TLB hit?
Physical address

Mo Yes

Try to read data

from cache
wmﬁi{g‘;ﬁﬁm” Try to write data
Cache miss stall | No A s to cache
while read block :
Deliver data
to the CPU
Cache miss stall | Mo . Yes
7
while read blodk Gaghe hit?

Write data into cache,
update the dirty bit, and
put the data and the
address into the write buffer

Page
table Possible? If so, under what circumstance?

Miss | Possible, although the page table is never really checked if TLB hits.

Miss Hit Hit TLB misses, but entry found in page table; after retry, data is found in cache.
Miss Hit Miss | TLB misses, but entry found in page table; after retry, data misses in cache.

Miss | Miss Miss | TLB misses and is followed by a page fault; after retry, data must miss in cache.
Hit Miss Miss | Impossible: cannot have a translation in TLB if page is not present in memory.

Hit Miss Hit Impossible: cannot have a translation in TLB if page is not present in memory.
Miss | Miss Hit Impossible: data cannot be allowed in cache if the page is not in memory.
FIGURE The possible combinations of events in the TLB, virtual memory system,

and cache. Three of these combinations are impossible, and one is possible (TLB hit, virtual memory hit,
cache miss) but never detected.

DIRECT MEMORY ACCESS (DMA)

A direct memory access (DMA) is an operation in which data is copied (transported) from
one resource to another resource in a computer system without the involvement of the CPU.
To copy data from HDD to pen drive, CPU is not necessary

CPU is general purpose processor and has lot of work has to be done by CPU in a computer
system.

DMA is speed up the memory operations

DMA reduces the CPU interaction in data transfer, so CPU utilization will be high in the
system

DMA Controller:

The unit that controls DMA transfers is referred to as a DMA Controller

DMAC is a controller (a chip) specially designed for Data transfer Invented by Intel.

In DMA process, DMAC will take over the control of the Bus and become master of it until
the transfer is completed or CPU revoke the grant of master of bus

o I/O device request the DMAC (DRQ) to transfer data

o DMAC request CPU to grant bus to use (HL.Q - Hold request)

© CPU grants the access to use bus by DMAC (HLDA - Hold Acknowledgement)

To initiate the transfer of a block of words, the processor sends to the DMA controller the
starting address, the number of words in the block, and the direction of the transfer.

The DMA controller then proceeds to perform the requested operation.

When the entire block has been transferred, it informs the processor by raising an interrupt
signal.

Registers in DMAC:

31 30 1 0

Status and control
IRQ J | ‘ |— Done
IE R/W

Starting address

Word count

DMA controller registers that are accessed by the processor to initiate the data transfer.
Two registers are used for storing the starting address and the word count.

The third register contains status and control flags.

The R/W bit determines the direction of the transfer.

o When this bit is set to 1, the controller performs a Read operation.

o Otherwise, it performs a Write operation.

Additional information is also transferred as may be required by I/O device.

When the controller has completed transferring a block of data, it sets the Done flag to 1.
Bit 30 is the Interrupt-enable flag, IE.

© When this flag is set to 1, it causes the controller to raise an interrupt after it has
completed transferring a block of data.
* Finally, the controller sets the IRQ bit to 1 when it has requested an interrupt.

Processor
) Main
Bridge memory
PCI bus

Disk/DMA DMA
controller controller
Disk Disk Ethernet
interface

~_

Use of DMA controllers in a computer system.

* One DMA controller connects a high-speed Ethernet to the computer's I/O bus.

* The disk controller, which controls two disks, also has DMA capability and provides two
DMA channels. It can perform two independent DMA operations, as if each disk had its own
DMA controller.

* To start DMA transfer of block of data from the main Memory to one of the disks, an OS
routine write the address and word count info into the registers of the disk controllers.

* The DMA controller proceeds independently to implement the specified operation.

* When the transfer is completed, this fact is recorded in the status and control register of the
DMA channel by setting the Done bit.

» At the same time, if the IE bit is set, the controller sends an interrupt request to the processor
and sets the IRQ bit.

* The status register may also be used to record other information, such as whether the transfer
took place currently or errors occurred.

The DMA Controller Transfers the Data in Three Modes:
1. Burst Mode

2. Cycle Stealing Mode

3. Transparent Mode

Burst Mode:
* Once the DMA controller gains the charge of the system bus, then it releases the system bus
only after completion of data transfer.
* Till then the CPU has to wait for the system buses.
Cycle Stealing Mode:
* The DMA controller forces the CPU to stop its operation and relinquish the control over the
bus for a short term to DMA controller.
» After the transfer of every byte, the DMA controller releases the bus and then again requests
for the system bus.
* In this way, the DMA controller steals the clock cycle for transferring every byte.
Transparent Mode:
* The DMA controller takes the charge of system bus only if the processor does not require the
system bus.
Storage Buffer:
* Most DMA controllers incorporate a data storage buffer.
¢ In the case of the network interface, the DMA controller reads a block of data from the main
memory and stores it into its input buffer.
* This transfer takes place using burst mode at a speed appropriate to the memory and the
computer bus.
Then, the data in the buffer are transmitted over the network at the speed of the network.
Advantages:
* Transferring the data without the involvement of the processor will speed up the read-write
task.
* DMA reduces the clock cycle requires to read or write a block of data.
* Implementing DMA also reduces the overhead of the processor.
Disadvantages:
* Asitis a hardware unit, it would cost to implement a DMA controller in the system.
* Cache coherence problem can occur while using DMA controller.

Arbitration:
* A conflict may arise if both the processor and a DMA controller or two DMA controllers try
to use the bus at the same time to access the main memory.
* To resolve these conflicts, an arbitration procedure is implemented on the bus.

Bus Arbitration

— A device that initiates data transfers on the bus at any given time is called a bus master.

- Bus arbitration is a process by which next device becomes the bus controller by transferring bus
mastership to another bus

Bus arbitration schemes usually try to balance two factors:

= Bus priority: the highest priority device should be serviced first

» Fairness: Even the lowest priority device should never be completely locked out from the bus

Types of Bus Arbitration:
i)Centralized Arbitration

ii)Distributed Arbitration

Centralized Arbitration:
* A single bus arbiter performs the required arbitration.

The bus arbiter may be the processor or a separate controller connected to the bus.

There are three different arbitration schemes that use the centralized bus arbitration approach
1. Daisy Chaining Method

2. Centralized Bus Arbitration Polling or Fixed Priority or Rotating Priority Method

3. Independent Request Method

A DMA controller indicates that it needs to become the bus master by activating the Bus-
Request line, BR.

When Bus-Request is activated, the processor activates the Bus-Grant signal, BGI, indicating
to the DMA controllers.

This signal is connected to all DMA controllers using a daisychain arrangement.

If DMA controller 1 is requesting the bus, it blocks the propagation of the grant signal to
other devices.
Otherwise, it passes the grant downstream by asserting BG2.

The current bus master indicates to all devices that it is using the bus by activating another
open-collector line called BusBusy BBSY.

During its tenure as the bus master, it may perform one or more data transfer operations. After
it releases the bus, the processor resumes bus mastership.

The arbiter circuit ensures that only one request is granted at any given time, according to a
predefined priority scheme. Alternatively, a rotating priority scheme may be used to give all
devices an equal chance of being serviced.

BESY
- 1 >
BR
Processor ! T l
DMA DMA
———=| controller —=| controller ——e
BG1 1 BG2 2

DMA controller 2
asserts the BR signal.

_ > Processor asserts

BR \L/’/"'/TT‘ the BG1 signal

BG1 \"\ BG1 signal propagates
l to DMA#2.

BG2 } L ke

BBSY

Bus / ! | | |

master Processor ! DMA controller 2 !

——— Time

! Processor

Processor relinquishes control
of the bus by setting BBSY to 1.

Distributed arbitration:

All devices waiting to use the bus share the responsibility of carrying out the arbitration
process

Arbitration process does not depend on a central arbiter and hence distributed arbitration has
higher reliability.

Each device is assigned a 4-bit ID number All the devices are connected using 5 lines, 4
arbitration lines to transmit the ID, and one line for the Start-Arbitration signal

A winner is selected as a result of the interaction among the signals transmitted over these
lines by all contenders. The net outcome is that the code on the four lines represents the
request that has the highest ID number.

if the input to one driver is equal to one and the input to another driver connected to the same
bus line is equal to 0 the bus will be in the low-voltage state. In other words, the connection
performs an OR function in which logic I wins.

VCC
ARB3
ARB2
] =

ARBO

T

%A 28 Yylty

0 |1 |0 |1 0|1 |1 |1

Interface Circuit for Device A

* Assume that two devices, A and B, having ID numbers 5 and 6. respectively. are
requesting the use of the bus.

* Device A transmits the pattern 0101, and device B transmits the pattern 0110.

* The code seen by both devices is 0111. Each device compare the pattern on the
arbitration lines to its own ID, starting from the most significant be If it detects a
difference at any bit position, it disables its drivers at that bit position and for all lower-
order bits.

* It does so by placing a 0 at the input of these drivers.

* In the case of our example, device A detects a difference on line ARB1. Hence, it
disable its drivers on lines ARBI and ARBO.

* This causes the pattern on the arbitration lines to change to 0110, which means that B
has won the contention.

* Note that, since the code on the priority lines is 0111 for a short period, device B may
temporarily disable driver on line ARBO.

* However, it will enable this driver again once it sees a 0 on line ARBI resulting from
the action by device A.

* Decentralized arbitration has the advantage of offering higher reliability, because
operation of the bus is not dependent on any single device.

* Many schemes have been proposed and used in practice to implement distributed
arbitration.

Input/Output System
—
o Important components of any computer system are -

o CPU
g Memory
& TIO devices (Peripherals).

o CPU fetches instructions from memory, process them and stores the result in
memory

e The other components of the computer system (/O devu:es) cal]ed the
Input/output system :

" e Main function of I/O System

o To transfer information between CPU and the outside world

/O devices cannot directly connected to the system bus because of the following
reasons : :

o Each I/O devices have different methods of operation
o So it is difficult to incorporate the logic within CPU
o Data transfer rate of I/O device is much slower than that of the memory

o So it is not possible to use high speed system bus to communicate
directly with I/O devices

o I/O device used in computer system have different data formats and word
length than that of CPU,

¢ To overcome the difficulties, to use modules in between the system bus and
Peripherals called I/O module or I/O system or I/O interface,

Input Device Output Device
(Keyboard) (Graphic Display)

Constraint Types

Two primary types of specification while designing a I/O system

I. Latency-or response constraints

2. Bandwidth or throughput constraints
e Latency constraints
o Total elapsed time to accomplish an input or output operation

o Bandwidth constraints

o Amount of information commumcated across an mterconnect to the
processor/mcmory (/O device) per unit time

Accessing I/0 devices

« /O devices can be connected to a computer through a single bu ?’?mes the
exchange of information. 2 o ~__a) ouif

\}he bus consists of three sets of lmes used to carry address, data and control 51gnals

« Each I/O device is assigned a unique set of addresses.

\/When the processor places a particular address on the address lines, the device that
recognizes this address responds to the commands issued on the control lines.

transferred over the data lines.
e ————

\ﬂe processor requests either a read or a write operation, and the requested data are

Single Bus Structure

Processor Memory

Bus

VO device | I/0 device n

Fig 5.1 Single Bus Structure
Memory-mapped I/O

o When /O devices & memory share the same address space, the arrangement is called
memory mapped 1/0.

o With memory-mapped /O, any machine instruction that can access memory can be
used to transfer data to or from an I/0 device.

Program contrelled /O

¢ Program controlled I/O is one in which the processor repeatedly ghecks a status flag to
achieve the required synchronization between Processor & I/0 device.

o The processor polls the device.
e There are 2 mechanisms to handle 1/O operations. They are,

\ynterrupt - Synchronization is achieved by having the /O device send a
special signal over the bus whenever it is ready for a data transfer operation

o DMA (Direct Memory Access) - It is a technique used for high speed I/0 device.
\/ Here, the input device transfers data directly to or from the memory without

continuous involvement by the processor.
_————-—-/—- -
DATA TRANSFER (I/0) TECHNIQUES

-

e To transfer data, the system requires external devices and processor.

Different types of I/O data transfer
|. Programmed [/O
2. Interrupt
3. Direct Memory AcCess (DMA)
Programmed 1/O

* 1/0 operations are directly controlled by the processor, th
Programmed /O

en the system is said to be

e Data item transfer is initiated by an instruction in the program

o Transferring data under program control requires the constant monitoring of tje
peripheral by the CPU

e Transfer a data between I/O device and memory or between /O device and the
processor

« [/O device does not have direct access to memory
o Processor executes a program that initiates, direct, and terminate 1/0 operalions
o Process includes ’

o Sensing device status

o Sending read and write commands

o Transferring the data

Processor periodically checks the status of the 1/O system until the operation is
completed.

Flowchart
: Issue read .

command to CPU -31/0

3,70
Y

Read status of I/O /O - CPU
module —

Not

Read word from 10 =>CPU
1/0 moduls

Wrle word
" into memory CPU = Memory

-

I - N
PA«O{JA&mmeA o Tntevoupt Tfp ¥ aoet oy
{ J AcCcenn
£ BLO}}: o v }U\r{/anl
S‘,Mdgjg ML"W"‘_Y l~'nuu T ‘;f A9
B))Mﬂ P
- L . 4
Exteanal | Tntewal
B S e
$9 hwase
_ o exaplimaf Bh
M’(ﬁb’!— i '[r’-\’/;gjkabfﬂ_ . é’f:’f‘#hm -LﬂL‘EYh(f,b

Basic operation
« CPU requests /O operation

1/O module performs read operation
Check the status bits periodically
Read the data from I/O module

" Transfer the data to memory

Check if all the data words are transferred if not g
next operation

e Y [}

o to step 1 otherwise continue

PARAILEIL AND SERIAL INTERFACE

Interface Circuits:

The I/O interface of a device consists of the circuitry needed to connect that device to the bus.
On one side of the interface are the bus lines for address, data, and control.

On the other side are the connections needed to transfer data between the interface and the I/0
device.

This side is called a port, and it can be either a parallel or a serial port.

An I/0 interface does the following:

1.

ok wnN

Provides a register for temporary storage of data

Includes a status register containing status information that can be accessed by the processor
Includes a control register that holds the information governing the behaviour of the interface
Contains address-decoding circuitry to determine when it is being addressed by the processor
Generates the required timing signals

Performs any format conversion that may be necessary to transfer data between the processor
and the I/O device, such as parallel-to-serial conversion in the case of a serial port

Parallel Interface:

A typical keyboard consists of mechanical switches that are normally open.
When a key is pressed, its switch closes and establishes a path for an electrical signal.

This signal is detected by an encoder circuit that generates the ASCII code for the
corresponding character.

A difficulty with such mechanical pushbutton switches is that the contacts bounce when a key
is pressed, resulting in the electrical connection being made then broken several times before
the switch settles in the closed position.

Although bouncing may last only one or two milliseconds, this is long enough for the
computer to erroneously interpret a single pressing of a key as the key being pressed and
released several times.

The effect of bouncing can be eliminated using a simple debouncing circuit.
Input interface

Data
™ Data
|+

| Adwess | | kBo_oama | ¢
]

_— R/W Encoder Keyboard
Processor b — — =l | kBD_STATUS circuit © | switches

Master-ready Valid
el

Slave-ready

Figure 7.10: Keyboard to Processor connection

The output of the encoder consists of one byte of data representing the encoded character and
one control signal called Valid.

When a key is pressed, the Valid signal changes from 0 to 1, causing the ASCII code of the
corresponding character to be loaded into the KBD_DATA register and the status flag KIN to
be set to 1.

D7 {j QD f—o
. - : Keyboard
. : . data
Do <] Q Dof—o
SIN .
{P“I Sttes Valid
N o e
Slave- i
ready [}
Read-
stams Read-
data
N)
RIW
Master-
ready
A3l ———— A
. decoder

Al —— é
AD
Input-interface-circuit

The interface circuit connected to an asynchronous bus on which transfers are controlled by
the handshake signals Master-ready and Slave-ready.

Implementation of the status flag circuit
SIN

Read-data -

Y
Mase ey —]>0 D |

Q <4— Valid
| o
The KIN flag is the output of a NOR latch connected

A flip-flop is set to 1 by the rising edge on the Valid signal line.
This event changes the state of the NOR latch to set KIN to 1, but only when Master-ready is

low.

The reason for this additional condition is to ensure that KIN does not change state while
being read by the processor.

Both the flip-flop and the latch are reset to 0 when Read-data becomes equal to 1, indicating
that KBD_DATA is being read.

A designer using modern computer aided design tools would specify these functions using a
hardware description language such as VHDL or Verilog.

The resulting circuits would depend on the technology used and may or may not be the same
as the circuits shown in these figures.

Output Interface:

used to connect an output device such as a display.
Assume that the display uses two handshake signals, New-data and Ready, in a manner
similar to the handshake between the bus signals Master-ready and Slave-ready.

When the display is ready to accept a character, it asserts its Ready signal, which causes the
DOUT flag in the DISP_STATUS register to be set to 1.

When the I/O routine checks DOUT and finds it equal to 1, it sends a character to
DISP_DATA.

This clears the DOUT flag to 0 and sets the New-data signal to 1.

In response, the display returns Ready to O and accepts and displays the character in
DISP_DATA.

When it is ready to receive another character, it asserts Ready again, and the cycle repeats.
Output interface

Diata oy
> Drata
Address DISP DATA | | "]
] .
]
— Ready
R/W - Display
Processor DISP_STATUS P
Master-ready
MNew-data
Slave-ready j

Display to processor connection.

Serial Interface:

A serial interface is used to connect the processor to I/0 devices that transmit data one bit at a
time.

Data are transferred in a bit-serial fashion on the device side and in a bit-parallel fashion on
the processor side.

The transformation between the parallel and serial formats is achieved with shift registers that
have parallel access capability.

The input shift register accepts bit-serial input from the I/O device.
When all 8 bits of data have been received, the contents of this shift register are loaded in
parallel into the DATAIN register.

Similarly, output data in the DATAOUT register are transferred to the output shift register,
from which the bits are shifted out and sent to the I/O device.

DISP_DATA

07 D, 0y

o7 5 " [ata

1 s

Do I::.I:: .-"x Q':I

“__,.#I DOUT Read ¥
Handshake |™
control
MNew-data
Slave-ready 1 |
Read-status Write-data

[]
>

Master-ready

Address
decoder

My-address

AT — f‘ﬁ

Al

Figure 7.14 An output inferfoce circuit.

Two status flags, which refers to as SIN and SOUT, are maintained by the Status and control
block.

The SIN flag is set to 1 when new data are loaded into DATAIN from the shift register, and
cleared to 0 when these data are read by the processor.

The SOUT flag indicates whether the DATAOUT register is available.

It is cleared to O when the processor writes new data into DATAOUT and set to 1 when data
are transferred from DATAOUT to the output shift register.

The double buffering used in the input and output paths

It is possible to implement DATAIN and DATAOUT themselves as shift registers, thus
obviating the need for separate shift registers.

After receiving one character from the serial line, the interface would not be able to start
receiving the next character until the processor reads the contents of DATAIN.

Thus, a pause would be needed between two characters to give the processor time to read the
input data.

* With double buffering, the transfer of the second character can begin as soon as the first
character is loaded from the shift register into the DATAIN register.

* Thus, provided the processor reads the contents of DATAIN before the serial transfer of the
second character is completed, the interface can receive a continuous stream of input data
over the serial line.

* An analogous situation occurs in the output path of the interface.

* During serial transmission, the receiver needs to know when to shift each bit into its input
shift register.

* Since there is no separate line to carry a clock signal from the transmitter to the receiver, the
timing information needed must be embedded into the transmitted data using an encoding
scheme.

* There are two basic approaches.

* The first is known as asynchronous transmission, because the receiver uses a clock that is not
synchronized with the transmitter clock.

* In the second approach, the receiver is able to generate a clock that is synchronized with the
transmitter clock

Input shift register !.§-:r|:1I
input
DATAIN
D7
]
DATADLT
Al — -
y N '
A2 Address decoder !
: Serial
P and Output shift register |—=
RMW — | conotrol circuit output
Master-ready —
Slave-ready e—
Status m—— Receiving clock
and
control la—— Transmission clock

Figure 7.15 A serial interfoce.

Asynchronous Transmission:
* This approach uses a technique called start-stop transmission.

Data are organized in small groups of 6 to 8 bits, with a well-defined beginning and end. In a
typical arrangement, alphanumeric characters encoded in 8 bits are transmitted

The line connecting the transmitter and the receiver is in the 1 state when idle.

A character is transmitted as a 0 bit, referred to as the Start bit, followed by 8 data bits and 1
or 2 Stop bits.

The Stop bits have a logic value of 1.

The 1-to-0 transition at the beginning of the Start bit alerts the receiver that data transmission
is about to begin.

Using its own clock, the receiver determines the position of the next 8 bits, which it loads into
its input register.

The Stop bits following the transmitted character, which are equal to 1, ensure that the Start
bit of the next character will be recognized.

When transmission stops, the line remains in the 1 state until another character is transmitted.

Idle state
l & data bits
: o |1]23s|p]s]|s]7
LEB M5B
0 _——
— =— o -
L laor2 Start bit
Start hit | bit time Stop bits of new

character

Figura 7.16 Asynchronous serial chaoradter transmission.

Synchronous Transmission:

In the start-stop scheme, the position of the 1-to-0 transition at the beginning of the start bit is
the key to obtaining correct timing information.

This scheme is useful only where the speed of transmission is sufficiently low and the
conditions on the transmission link are such that the square waveforms shown in the figure
maintain their shape.

For higher speed a more reliable method is needed for the receiver to recover the timing
information.

Encoded data are usually transmitted in large blocks consisting of several hundreds or several
thousands of bits.

The beginning and end of each block are marked by appropriate codes, and data within a
block are organized according to an agreed upon set of rules. Synchronous transmission
enables very high data transfer rates

INTERRUPT

Definition

External event that affects the normal flow of instruction execution generated by

the external hardware devices such as keyboard, mouse, disk drives, scanner, and
printer.

Example

o Computer system should give response to devices such as keyboard, mouse
when they request for service ’

If a device wants to notify the processor about the completion of operation by
sending a hardware signal called interrupt

Interrupt Request line is used to alert the processor
Interrupt Service Routine

o The processor provides the requested service called the Interrupt Servnce
Routine (ISR).

Processor acknowledges the interrupt by using interrupt acknowledgement signal

Interrupt request
CPU ¢ : 1/0

o System

Interrupt acknowledgment

¢ [/O system gains control of the bus
o [/O system sends interrupt request

e The processor acknowledges the interrupt request

.1 Types of interrupt

(4

Hardware interrupt

o Interrupt caused by an external signal is referred as Hardware interrupt

Software interrupt

o Interrupt caused by special instruction are called Software interrupt

.2 Flowchart

Issue read

command to CPU-IL0
1O module >

y

Read status of IO [~ Interrupt
module

'O->CPU

Read word from L0 ->CPU
L0 module
Wnite word
mto memory |. CPU > Memory

Next Instruction

3 Basic operation
.3.1 /O module view point
o /O module receives a READ command form the prﬁcessor

« /O module reads data from desired peripheral into data register

e 1/0 module interrupts the processor
» 1O module waits until data is requested by the processor

o 1/O module places data on the data bus when requested

3.2 Processor view point
e The processor issues a READ command
e The processor performs some other useful work
e The processor checks for interrupts at the end of the instruction cycle
 The processor saves the current context when interrupted by the I/0 module
 The processor read the data from the I/O module and stores it in memory
¢ The processor the restores the saved context and resumes execution

.4 Interrupt hardware |
o 1/O device request an interrupt by activating a bus line called interrupt-request
¢ A single interrupt request line may be used to serve n devices
* All devices are connected to interrupt request line via switches to ground

lf_all interrupt request lines of 1/0 devices are inactive, then interrupt request line
will be equal to V44

INTR = INTR| + INTR +.....ocnen.. +INTRn

Common Interrupt Request Line

Processor

INTR

/—-— INTR (L— INTR2 +=+- (L_ INTRn
I

INTR ‘ ﬂQ

v

.5 Enabling and disabling interrupts

pt request from an external device causes the processor tc

o The arrival of an interru
he execution of another program

suspend the execution of one program and start t

o INTERRUPT signal is active during the execution of Interrupt Service Routine.

e The sequence of events in handling interrupt can be summarized as follows

o The device raises an interrupt request.

o The processor interrupts the program currently being exccuted.

o Interrupts are disabled by changing the control bits is PS (Processor Status
register)

o The action requested by the interrupt is performed by the interrupt-service
routine

o The device is informed that its request has been recognized and in response.
it deactivates the INTERRU/PT signal.

o Interrupts are enabled and execution of the interrupted program is resumed.

6 Exceptions

An interrupt is an event that stops execution of one program and start execute
another program

Also referred as interruption
Example

o /O interrupt

Types of exception

I

Recovery from errors

2. Debugging -

B

Privileged Exception

.6.1 Recovery from Errors

Computers have error-checking code in Main Memory, which allows detection of
errors in the stored data.

If an error occurs, the control hardware detects and informs the processor by
raising an interrupt. B

The processor also interrupts the program, if it detects an error or an unusual
condition while executing the instance (ie) it suspends the program being executed
and starts an execution service routine.

It takes appropriate action to recover from the error.

6.2 Debugging

System software has a program called debugger, which find errors in a progran;

v

o The debugger provides two important facilities

1. Trace

2. Breakpoint

Trace Mode

]

When processor is in trace mode, an exception occurs after execution of every
instance using the debugging prograrn as the exception service routine.

The debugging program examine the contents of registers, memory location etc.

On return from the debugging program the next, instance. in the program being
debugged is executed

The trace exception is disabled during the execution of the debugging program.

Break point

(4]

Program being debugged is interrupted only at specific points selected by the user

An instance called the Trap (or) software interrupt is usually provided for this
purpose :

While debugging the user may interrupt the program execution after instance

When the program is executed and reaches th int i i
| / at point 1t examine t)
register contents P e

.6.3 Privileged Exception

e To protect the OS of a computer from being corrupted by user program certain

instance can be executed only when the processor is in supervisor mode called

privileged exceptions.

o When the processor is in user mode, it will not execute instance (ie) when the

processor is in supervisor mode, it will execute instance

Interconnection Standards
A typical desktop or notebook computer has several ports that can be used to connect I/Odevices,
such as a mouse, a memory key, or a disk drive.
Standard interfaces have been developed to enable I/O devices to use interfaces that are independent
of any particular processor.

A memory key that has a USB connector can be used with any computer that has a USB port.

Universal Serial Bus (USB)
The Universal Serial Bus (USB) is the most widely used interconnection standard.
A large variety of devices are available with a USB connector, including mice, memory keys, disk
drives, printers, cameras, and many more.
The success of the USB is due to its simplicity and low cost.
The original USB specification supports two speeds of operation, called low-speed (1.5 Megabits/s)
and full-speed (12 Megabits/s).

USB 2, called High-Speed USB, was introduced.
It enables data transfers at speeds up to 480 Megabits/s.

As 1/0 devices continued to evolve with even higher speed requirements, USB 3 (called Superspeed)
was developed.
It supports data transfer rates up to 5 Gigabits/s.

Key objectives:
1. Provide a simple, low-cost, and easy to use interconnection system

2. Accommodate a wide range of I/O devices and bit rates, including Internet connections, and
audio and video applications
3. Enhance user convenience through a “plug-and-play” mode of operation

Device Characteristics

The kinds of devices that may be connected to a computer cover a wide range of functionality.

The speed, volume, and timing constraints associated with data transfers to and from these devices
vary significantly.

The sampling process yields a continuous stream of digitized samples that arrive at regular intervals,
synchronized with the sampling clock. Such a data stream is called isochronous, meaning that
successive events are separated by equal periods of time. A signal must be sampled quickly enough
to track its highest-frequency components.

Data transfers for images and video have similar requirements, but require much higher data transfer
rates. To maintain the picture quality of commercial television, an image should be represented by
about 160 kilobytes and transmitted 30 times per second. Together with control information, this
yields a total bit rate of 44 Megabits/s. Higher-quality images, as in HDTV (High Definition TV),
require higher rates.

Plug-and-Play

The USB standard defines both the USB hardware and the software that communicates with it.

Its plug-and-play feature means that when a new device is connected, the system detects its existence
automatically.

The software determines the kind of device and how to communicate with it, as well as any special
requirements it might have.

As a result, the user simply plugs in a USB device and begins to use it, without having to get
involved in any of these details.

The USB is also hot-pluggable, which means a device can be plugged into or removed from a USB
port while power is turned on.

USB Architecture

The USB uses point-to-point connections and a serial transmission format.
When multiple devices are connected, they are arranged in a tree structure

Host com puter

140 10 Vo 1o

device device device device

Vo o

device device

Figure 7.17 Universal Serial Bus tree structure.

Each node of the tree has a device called a hub, which acts as an intermediate transfer point between
the host computer and the I/O devices.

At the root of the tree, a root hub connects the entire tree to the host computer.

The leaves of the tree are the I/O devices: a mouse, a keyboard, a printer, an Internet connection, a
camera, or a speaker.

The tree structure makes it possible to connect many devices using simple point-to-point serial links.

Polling:
If I/O devices are allowed to send messages at any time, two messages may reach the hub at the

same time and interfere with each other.

The USB operates strictly on the basis of polling.

A device may send a message only in response to a poll message from the host processor.
Hence, no two devices can send messages at the same time.

This restriction allows hubs to be simple, low-cost devices.

Address:
Each device on the USB, whether it is a hub or an I/O device, is assigned a 7-bit address. This
address is local to the USB tree and is not related in any way to the processor’s address space.

The root hub of the USB, which is attached to the processor, appears as a single device.
The host software communicates with individual devices by sending information to the root hub,
which it forwards to the appropriate device in the USB tree.

Connection:

When a device is first connected to a hub, or when it is powered on, it has the address 0.

Periodically, the host polls each hub to collect status information and learn about new devices that
may have been added or disconnected.

When the host is informed that a new device has been connected, it reads the information in a special
memory in the device’s USB interface to learn about the device’s capabilities.

It then assigns the device a unique USB address and writes that address in one of the device’s
interface registers.

It is this initial connection procedure that gives the USB its plug-and-play capability.

Isochronous Traffic on USB

An important feature of the USB is its ability to support the transfer of isochronous data in a simple
manner.

isochronous data need to be transferred at precisely timed regular intervals.

To accommodate this type of traffic, the root hub transmits a uniquely recognizable sequence of bits
over the USB tree every millisecond. This sequence of bits, called a Start of Frame character, acts as
a marker indicating the beginning of isochronous data, which are transmitted after this character.
Thus, digitized audio and video signals can be transferred in a regular and precisely timed manner.

| PID, | PID, | PID, | PID, |F'rr1U | P, |F’TD2]F'1D3 |

(a) Packet identifier field

Biis | g | 4 i Control packets used for
i PID | ADDR | ENDP | CRC16 l controlling data transfer
operations are called token
packets.

(b) Token packet, IN or OUT

'.i1sJ 8 | 0108192 | 16 |

|PID| DATA | CRC16 |

(c) Data packet

Figure 45. USB packet format.

§ — Start-of-frame packet
Tn— Token packet, address = n
D — Data packet

A — ACK packet

(b) Frame example
Figure 4.47 USB frames.

Electrical Characteristics

USB connections consist of four wires, of which two carry power, +5 V and Ground, and two carry
data.
Thus, I/0 devices that do not have large power requirements can be powered directly from the USB.

Two methods are used to send data over a USB cable.

When sending data at low speed, a high voltage relative to Ground is transmitted on one of the two
data wires to represent a 0 and on the other to represent a 1.

The Ground wire carries the return current in both cases.

Such a scheme in which a signal is injected on a wire relative to ground is referred to as single-ended
transmission.

The speed at which data can be sent on any cable is limited by the amount of electrical noise present.
The term noise refers to any signal that interferes with the desired data signal and hence could cause
errors.

Single-ended transmission is highly susceptible to noise.
The voltage on the ground wire is common to all the devices connected to the computer.

Signals sent by one device can cause small variations in the voltage on the ground wire, and
hence can interfere with signals sent by another device. Interference can also be caused by one wire
picking up noise from nearby wires.

The High-Speed USB uses an alternative arrangement known as differential signaling.

The data signal is injected between two data wires twisted together.

The ground wire is not involved.

The receiver senses the voltage difference between the two signal wires directly, without reference to
ground.

This arrangement is very effective in reducing the noise seen by the receiver, because any noise
injected on one of the two wires of the twisted pair is also injected on the other.

Since the receiver is sensitive only to the voltage difference between the two wires, the noise
component is cancelled out.

The ground wire acts as a shield for the data on the twisted pair against interference from nearby
wires. Differential signaling allows much lower voltages and much higher speeds to be used
compared to single-ended signaling.

SATA

In the early days of the personal computer, the bus of a popular IBM computer called AT,
which was based on Intel’s 8080 microprocessor bus, became an industry standard.

It was named ISA, for Industry Standard Architecture.

An enhanced version, including a definition of the basic software needed to support disk
drives, was later named ATA, for AT Attachment bus.

A serial version of the same architecture became known as SATA, which is now widely used
as an interface for disks.

Like all standards, several versions of SATA have been developed with added features and
higher speeds.

The original parallel version has been renamed PATA, but it is no longer used in new
equipment.

The basic SATA connector has 7 pins, connecting two twisted pairs and three ground wires.
Differential transmission is used, with clock frequencies ranging from 1.5 to 6.0 Gigabits/s.
Some of the recent versions provide an isochronous transmission feature to support audio and
video devices.

Features:

Low Voltage Requirement: SATA operates on 500mV (0.5V) peak-to-peak signaling. This
help in promoting a much low interference and crosstalk between conductors.

Hot Plugging: This feature helps users to change or remove storage devices even when the
computer is running.

Staggered Spin-Up: Allows sequential hard disk drive startup, which helps even out power
load distribution during system booting.

Native Command Queuing (NCQ): Usually, the commands reach a disk for or writing from
different locations on the disk. When the commands are carried out based on the order in
which they appear, a substantial amount of mechanical overhead is generated because of the
constant repositioning of the read/write head. SATA 1I drives use an algorithm to identify the
most effective order to carry out commands. This helps to reduce mechanical overhead and
improve performance.

Port Multipliers: Allows the connection of up to 15 drives to a SATA controller. This
facilitates the building of disk enclosures.

Port Selectors: Facilitates redundancy for two hosts connected to a single drive, allowing the
second host to take over in the event of a primary host failure.

Simplified construction: PATA cables had 40-pin/80-wire ribbon cable. This was complex
in structure. In comparison, SATA had a single 7 pin data cable and a 15 pin power cable.
This cable resulted in a higher signaling rate, which translates

Differential Signaling: SATA uses differential signaling. Differential signaling is a
technology which uses two adjacent wires to simultaneously the in-phase and out-of-phase
signals. Thus, it is possible to transfer high-speed data with low operating voltage and low
power consumption by detecting the phase difference between the two signals at the receiver's
end.

9. High data transfer rate: SATA has a high data transfer rate of 150/300/600 MBS/second.
This capability of SATA allows for faster program loading, better picture loading and fast
document loading.

10. Large Cable Length : SATA cable can be of length up to 1 meter, whereas PATA cable can
only have a length of maximum 18 inches.

Operating Modes:
SATA operates on two modes:

1)IDE mode: IDE stands for Integrated Drive Electronics. This mode is used to provide backward
compatibility with older hardware, which runs on PATA, at low performance.

2)AHCI mode: AHCI is an abbreviation for Advanced Host Controller Interface. AHCI is a high-
performance mode that also provides support for hot-swapping.

The Serial ATA [SATA] bus is defined over two separate connectors, one connector for the data lines
and one for the power lines.

Power

SATA Data pinout

1 GND Ground
2 A+ Transmit +
3 A- Transmit -
4 GND Ground

5 B- Receive-
6 B+ Receive+
7 GND Ground

Pin 1

COM

[froveemenn

- : =
+12v1 DC
e i
SATA Connector Serial ATA (SATA) Connector
Pin | Definition
1 Ground
2 A-+(Transmit)
3 A-(Transmit)
4 Ground
5 B-(Receive)
6 B+(Receive)
7 Ground

SATA Pinout - Plug

=
LTS
wn

B,_
B+ |
GND |~

GND
A+ N
A-

GND | &=

tel:150
tel:600
tel:300

